
Basic PLC Progrmming

Outline

� Introduction to Programming Software

� Ladder Diagram

� Basic Logic Functions

� Mnuemonic Code

� CX-Programmer

Flowchart

Ladder Diagram
� Primary programming language for PLCs.
� Other programming methods include:

� Function block diagrams (FBDs)
� Structured text (ST)
� Instruction List (IL)
� Sequential function charts (SFCs)

� Visual and Graphical language unlike textual high-level,
such as C, C++, Java…

� Derived form relay logic diagrams
� Primitive Logic Operations

� OR
� AND
� NOT

Ladder Diagram

Ladder Diagram

� Power Rails - Pair of vertical lines
� Rungs - Horizontal lines
� Contacts A, B, C, D… arranged on

rungs
� Note in PLC Ladder Logic:

� No Real Power Flow (like in
relay ladder)

� There must be continuous
path through the contacts to
energize the output

Terminologies

Power Rails

Rungs

Ladder Diagram
Binary Input Devices

Device One/Zero Interpretation

Limit switch Contact/no contact

Photodetector Contact/no contact

Pushbutton switch On/off

Timer On/off

Control relay Contact/no contact

Circuit breaker Contact/no contact

Ladder Diagram
Binary Output Devices

Device One/Zero Interpretation

Motor On/off

Alarm buzzer On/off

Lights On/off

Control relay Contact/no contact

Valves Closed/open

Clutch Engaged/not engaged

Solenoid Energised/not energised

Anatomy of Ladder Diagram

o

Anatomy of Ladder Diagram

� Input instructions are entered on the left
� Output instructions are entered on the right
� The power rails simulate the power supply lines

� L1 and L2 for AC circuits and +24V and
ground for DC circuits

� Most PLCs allow more than one output per rung
� The processor (or “controller”) scans ladder

rungs from top-to-bottom and from left-to-right.
� The basic sequence is altered whenever

jump or subroutine instructions are
executed.

Basic Ladder Logic Symbols

Logic Functions

� PLC programming is a logical procedure
� In a PLC program, “things” (inputs and rungs) are

either TRUE or FALSE
� If the proper input conditions are TRUE:

� The rung becomes TRUE and an output action
occurs (for example, a motor turns on)

� If the proper input conditions are not TRUE:
� The rung becomes FALSE and an output action

does not occur

Logic Functions
� AND

Logic Functions
� OR

Logic Functions
� NOT

Relay to Ladder Diagram

Relay to Ladder Diagram

Mneumonic Codes

� These instructions can be derived directly from the ladder

logic diagrams and entered into the PLC through a simple

programming terminal.

� Ladder logic diagrams can be read by the programming

console

� For this reason, ladder diagrams need to be converted into

mnuemonic codes that provides same information as ladder

diagrams and to be typed directly using programming

console.

Examples of Mneumonic Codes

� LOAD and LOAD Not

Examples of Mneumonic Codes

� AND and AND Not

Examples of Mneumonic Codes

� OR and OR Not

Examples of Mneumonic Codes

� Combine AND and OR

Examples of Mneumonic Codes

� OUTPUT and OUTPUT Not

Examples of Mneumonic Codes

� Write the mnuemonic code for the following

ladder diagram

� CX-Programmer, the programming software for all Omron's PLC series,

is fully integrated into the CX-One software suite.

� CX-Programmer includes a wide variety of features to speed up the

development of your PLC program. New parameter-setting dialogues

reduce setup time, and with standard function blocks in IEC 61131-3

structured text or conventional ladder language, CX-Programmer makes

development of PLC programs a simple drag & drop configuration.

Entering the Ladder Diagram:
CX Programmer

CX Programmer

©snaim 2008

CX Programmer: Overview

CX Programmer: Overview

CX Programmer: Input/Output

Opening New File

Configure PLC Devices

CX Programmer: Programming

PLC Mode

Exercise

� Draw process flowchart for
a given system

� Create the ladder diagran in
CX Programmer

Program Error Check (Compile)

Program Error Check (Compile)

Program Error Check (Compile)

Going Online

Going Online

 Ch 1 Introduction 1

Chapter 1 INTRODUCTION

Introduction to PLCs

Programmable logic controllers (PLCs) were introduced to industry between 1968 and 1970 as a

way to replace large expensive panels of relays, timers, and counters. Automotive manufacturers

were looking for ways to simplify start-up of new car lines after model changeovers each year

and save money in the cost of manufacturing installations.

Historically, relays have been used since the late 1800's to control simple processes. They were

used in the early days to control railroad crossings. Before simple relay logic was introduced to

control railroad crossing arms and alarm lights, accidents at these crossings were contributing to

a high toll on human life.

The term “relay” was coined as the name of the device invented by Samuel F. B. Morse who

invented the telegraph. The relay was invented as a device to extend the signal or “relay” the

signal of the telegraph more than the 20 mile limit of electrical signals at the time of the

invention of the telegraph (1836).

Relays, timers, and counters had been the favored choice for electrical and systems engineers to

manufacturing facilities, especially in facilities with a large number of machines making discrete

parts. Automotive manufacturers top the list of this type of manufacturing. At the same time that

costs continued to rise for the engineering and construction of automotive assembly lines,

computers were becoming more numerous and less costly. There was, however, a general

discomfort among engineers to replace relays with computers. Most were reluctant to place the

computer on the plant floor. A compromise was necessary for the engineer that he would be

willing to accept. A computer that appeared to be relay-ladder logic to the electrician but able to

use the computing capabilities of a computer was the device envisioned. The result of this vision

is what is known today as the PLC (Programmable Logic Controller).

Relays as well as timers and counters were the first devices replaced by the PLC. Relays are

electromechanical devices that use magnetism caused by power flow through the circuit's coil to

energize a core and move a plunger with contacts attached. Contacts change state when the coil

is magnetized. Normally open contacts close while normally closed contacts open. Changing

contacts combine to complete other circuits. Combinations of relay contacts energizing coils

form the basis of Boolean logic. Boolean logic deals with the combination of discrete on-off

states to turn on or off other outputs.

The principle of using PLCs as substitutes for relays to reduce the wiring, panel fabrication, and

engineering cost looked very appealing to the early PLC user. Like most electronic devices

appearing in the early '70's, cost of the early PLC was high and functionality was not well

developed. Early PLCs were developed around a mini-computer or special purpose control

board. It was not unusual to pay $50,000 or more for a single PLC complete with I/O and still

use relays for the most critical circuits. These hybrid designs existed for many years until

 Ch 1 Introduction 2

engineers became convinced that PLCs were as reliable as the relay and could be trusted equally

to the relay circuit being replaced. Hybrid circuits using both relays and PLCs existed for many

years but have become too expensive for most automation applications in today’s market.

In a quote from Programmable Logic Controllers: An Emphasis on Design and Application

(Erickson, 2005) about the early PLC:

“The machine tool and automotive industries were large users of relay control systems. A simple

machine tool would require six months to a year to completely debug (Morley, 2001). Every

year, automotive manufacturing facilities would be shut down for two to three months in order to

implement the changes due to the new automotive models. The lost production due to these

changes was significant.”

Richard (Dick) Morley was credited with the invention of the modern PLC. Morley worked for

Bedford Associates in Massachusetts in 1968 when the PLC was first conceived. Dick Morley

later wrote a book, History of the PLC in 2001 published by R. Morley Incorporated. Morley is

commonly considered the father of the PLC.

Another quote from Morley in addressing the toughness of the PLC supplied by Bedford

Associates, the Modicon controller from Morley’s text and found also in Erickson’s text:

“Landis [a machine tool company] decided to purchase the MODICON units and not use the

PDP-14. When DIGITAL [sic] tried it get back into Landis, Landis wrapped a welder cable

(operating) around the 084 and poured Coke over the unit. The 084 kept right on trucking.

Digital retreated with grace.”

Other anecdotal competitive stories abound and make up part of the folk lore of the early PLC.

One about a PLC using 15 volt logic shows the competition between early PLC vendors. The

vender owning the 15-volt PLC inserted a spark plug in a waveguide and entered a vendor’s

show with the noise gun in hand (carefully concealed in a briefcase). All of the PLCs were

successfully shut down when the waveguide was pointed at their machine except the 15 volt

model. This actually happened in the early race to be the best and the toughest PLC in industry.

Toughness (in this case, noise immunity) was very important to the manufacturing engineer.

What happened to the vendor of the 15-volt PLC? Today this vendor no longer is in the PLC

market, displaced by the strong competition in the manufacturing marketplace.

There has been a great deal of interest about the origins of the PLC since those who were

responsible for the origination of the PLC have retired and many have passed on. The

competition for the selection of the first successful PLC is very interesting. It is repeated in the

following article by Randall Brodzik, a writer for Control Engineering and found in the

following 8/27/2014 article:

 Ch 1 Introduction 3

“Inside the competition for the first PLC

1971 The race to develop the first programmable logic controllers was underway inside

General Motors’ Hydra-Matic Transmission Division in Ypsilanti, Michigan, in 1970.

Three finalists had very different architectures.

In 1970, a fierce contest was being waged inside General Motors' Hydra-Matic Transmission

Division in Ypsilanti, Michigan. At stake was program ownership of what would become the

first programmable logic controllers (PLCs), and the outcome would shape not only the design of

the first PLCs, but also the success or failure of their advocates.

PLC incubator

It was natural that GM's premier manufacturing technology group, Hydra-Matic, would be the

incubator of the PLC. A nationally recognized technology leader, Hydra-Matic had installed one

of the early IBM 1800 computers, the IBM 1801.

Richard Lundy, an owner of one of the original PLC suppliers, tells the story of when Ed

O'Connell, a Computer Group engineer, didn't think GM was getting enough support from IBM.

‘An entire test line was running off of the one computer,’ Lundy said, ‘which made it very

vulnerable, and Ed didn't like the support he was getting. So he called Watson.’ That's Thomas

Watson, Jr., the son of IBM's founder and company CEO. Support for Hydra-Matic's IBM

system quickly improved.”

In the following, Dave Emmett is described as the developer of the ‘Standard Machine

Controller’.

 Ch 1 Introduction 4

“In April of 1968, a young Hydra-Matic engineer, Dave Emmett, proposed the development of

what he called a ‘Standard Machine Controller.’ The controller he envisioned would replace the

relay systems that controlled machine operations. Emmett was in charge of the Circuitry Group,

and he envisioned a machine that would reduce maintenance costs, improve machine diagnostics,

and decrease panel space.

Randy Brodzik, who later worked for Emmett, remembers that Emmett had a clear vision of

what was needed: ‘Dave said the goal was to develop a technology that would significantly

reduce the time it took to make changes to a machine control sequence. With relays, first you had

to do all the documentation, and then change all the wiring. It would take hours.”

Another group also was involved at GM. The description of this group follows:

“At about the same time, another group in Hydra-Matic was envisioning a different type of

machine control system for GM. The Computer Division had hired Information Instruments, Inc.

(3-I) to create a computer controlled assembly machine for the forward clutch line. This new

The letter at left was the original

invitation for vendors to supply

a system that would become the

original PLC for GM.

 Ch 1 Introduction 5

control system had no limits to the number of elements in a ladder diagram, included parallel

processing, and could incorporate complex Boolean equations.

Richard Lundy, a program manager for 3-I at the time, said the competition between the two

Hydra-Matic Groups was ‘pretty dramatic.’ He described the Circuitry Group as wanting to

duplicate existing ladder diagrams, while the Computer Group wanted to use nonsequential

programming, similar to that used in current end-of-line test systems, to provide a more robust

instruction set and reduce processing time. The advantages and limitations of each approach

would become clear as the project progressed.”

Finally, a specification was written and shopped that would deliver a completed system. The

RFP was a Request for Proposal. This form is described in the following:

“In April and May of 1968, work was done on a request for proposal that is remarkably simple

by today's standards. The RFP, issued in June 1968, included only four pages of design

specifications, including a requirement that ‘memory word length shall be at least eight bits.’

Douglas Brant worked on specifications for equipment coming into Hydra-Matic. He said that

there was a strong rivalry between the Computer Group and the Circuitry Group in developing

the specifications. ‘I guess it boiled down to people's territory,’ Brant said.

Of the many companies who received the RFP, three were selected for evaluation: Digital

Equipment Corporation (DEC), 3-I, and Bedford Associates, a consulting firm. Its products were

the DEC PDP-14, the 3-I PDQ-II, and Bedford Associates' Modicon 084. (The Modicon name

came from MOdular DIgital CONtroller.)” See the following evaluation of the three finalists:

 Ch 1 Introduction 6

A PLC was installed at GM in June 1969. Its description follows:

“In June of 1969, DEC's PDP-14 was installed to control a gear grinder. Richard Lundy says that

in spite of a very strong GM-DEC relationship, DEC's concerns about memory failure

significantly limited the PDP-14's competitiveness. To make a change to the DEC program, ‘you

had to send the client program in to them, and they would send you back a hardwired memory

board,’ Lundy said. Having to remove a controller's memory from the plant to make changes

would prove to make the DEC option unsustainable.

Richard Lundy's company, 3-I, was aligned with the Hydra-Matic Computer Group. Lundy said

that during the evaluation period, the rivalry between the Computer Group and the Circuitry

Group escalated. To the Computer Group, the advantages of higher level logic capabilities were

clear and the selection of the PDQ-II was an obvious one. The 3-I solution for the forward clutch

line, with its complex programming, had performed beautifully. Lundy said the PDQ-II quickly

became known within the Computer Group as ‘pretty damn quick.’

Emmett and the Circuitry Group advocated strongly for the Modicon 084. The programming that

was seen as a benefit by the Computer Group was seen as a detriment by Emmett's team.

Because Modicon's programming language was similar to the Group's familiar relay ladder

diagrams, it was expected to provide the smoothest transition and lowest cost for training and

support. Randy Brodzik recalls that Emmett had an implementation view of the project: ‘He said

that in order for this new technology to achieve wide acceptance, it needed to emulate what was

already in place.’

As an added bonus for Modicon, the 084 was the only controller built into a hardened package,

providing plant floor protection that the other two options did not. And Modicon won.”

This is the original

Programming Panel for the

Modicon 084. Yes, the

numbers were thumb-wheel-

switches which were very

hard to turn and left fingers

with callouses after entering a

program. Note that there is no

recording mechanism yet.

That will come later.

 Ch 1 Introduction 7

Definitions of the PLC

NEMA's definition (NEMA or National Electrical Manufacturers’ Association) of a

programmable logic controller is "A digital electronic apparatus with a programmable memory

for storing instructions to implement specific functions such as logic, sequencing, timing,

counting, and arithmetic, to control machines and processes." This definition gives a good

summation of the functionality of the modern PLC. A PLC must have each of these functional

components to be considered a modern PLC. Primarily, the PLC is used to control machines.

Programmable logic controllers have varied widely in what is considered a process or a machine.

A few PLCs have even been used to control the duration of water for irrigation systems or lawn

watering control. The view of what is a process has widened through the years. The modern

PLC may even used to control the ingredients sprayed on a car moving through an automatic car

wash.

 A definition of the PLC from Liptak’s Process Control states:

“A programmable logic controller (PLC) is an industrially hardened computer-based unit that

performs discrete or continuous control functions in a variety of processing plant and factory

environments.”

These definitions of the PLC, either from NEMA or Liptak, give an overall picture of a computer

with a special functionality partial to the automation market and able to control a variety of

different machines. The purpose of this text is to more fully understand the use and

programming of a PLC and understand applications of PLCs in factory automation.

In the US, the general trend was for the PLC to emulate or copy ladder logic as employed in the

standard relay ladder logic or schematic drawing of the day. In other parts of the world, as the

PLC was studied, this was not necessarily the case.

In Germany, for instance, STL or Statement List was introduced. From the Siemens book:

Milestones in Automation by Arnold Zankl is the following quote (p. 54):

“Siemens had at first used STL programming exclusively and had been very successful with it.

It seemed reasonable to program something in the way people think of it and describe it verbally.

High education standards in Germany and Europe also supported this approach.

In the US, where training for skilled workers was generally less intensive than in other countries,

the ladder diagram, derived from the circuit diagram, dominated from the start.”

While this statement may not be meaningful to some, the choice of American PLC vendors to

pursue Ladder logic while the German PLC vendor Siemens pursued another language, STL,

was significant and has had an impact on the marketplace. While the German machine later

embraced Ladder as a second language, the reverse has not occurred to any degree with the

American market keeping strong ties to Ladder and not embracing other languages.

Understanding a variety of languages and being able to program in the language most

appropriate for the application is of primary importance and should be a student’s goal.

 Ch 1 Introduction 8

Evolution of the PLC

From that beginning, PLCs have grown in popularity and capability to the extent that they can be

found in some part of almost every industry. PLCs are produced by a variety of companies

worldwide and several companies that made PLCs in the last 30 years have been forced out of

the business by ever increasing competition.

Listed in Table 1-1 below is a time line of the evolution of the PLC from its inception to the

modern PLC. See Table 1-1 for a portion of the time line for PLC development. Table 1-2

describes the Siemens PLC and its parallel development in the European market place.

“History of Programmable Logic Controllers (PLCs)

Table 6.5b from Process Control by Liptak

1968
Design of PLCs developed for General Motors Corporation to eliminate costly scrapping or
assembly-line relays during model changeovers.

1969 First PLCs manufactured for automotive industry

1971 First application of PLCs outside the automotive industry

1973
Introduction of “smart” PLCs for arithmetic operations, printer control, data move, matrix
operations, CRT interface, etc.

1975
Introduction of analog PID (proportional, integral, derivative) control, which made possible the
accessing of thermocouples, pressure sensors, etc.

1976 First use of PLCs in hierarchical configurations as part of an integrated manufacturing system

1977 Introduction of very small PLCs based on microprocessor technology

1978 PLCs gain wide acceptance, sales approach $80 million

1979 Integration of plant operation through a PLC communication system

1980
Introduction of intelligent input and output modules to provide high-speed, accurate control in
positioning applications

1981
Data highways enable users to interconnect many PLCs up to 15,000 feet from each other.
More 16-bit PLCs become available. Color graphic CRTs are available from several
suppliers

1982 Larger PLCs with up to 8192 I/O become available

1983
“Third party” peripherals, including graphic CRTs, operators’ interfaces, “smart” I/P networks,
panel displays, and documentation packages, become available from many sources

Table 1-1 Early History of the PLC

The PLC is an American invention but the European manufacture Siemens was quick to augment

its automation offering to include its own PLC. The first PLC comparable to the American

equivalent is the S3, Siemens’ first storage programmable PLC. From Milestones in Automation

by Arnold Zankl of Siemens is the following history of the Siemens history of automation

control and the PLC in Europe.

1957 First prototype controllers from Siemens with germanium transistors

1964
Second generation control and switching systems introduced with board-design using Euro-
card

1971
Third generation controllers introduced
S1 - using hard-wired logic
S2 - using electronic sequence processor

 Ch 1 Introduction 9

1973 S3 – first storage programmable PLC from Siemens (Simatic S30)

1976 First fault-tolerant and safety-related PLC for burner controls

1979 Simatic S5 introduced

1984 S5-135U multiprocessor PLC with up to 4 central processors for high-speed application

1986 Introduction of distributed I/O for Simatic

1988 Introduction of S5-155U with multiprocessor technology including floating-point arithmetic

1994 Introduction of Simatic S7

2000 Integrated drive systems

2002 TIA Totally Integrated Automation links data to IT domain

Table 1-2 History of the Siemens PLC

The advancement of PLC technology continues to the present day with newer PLCs introduced

to meet the customers’ demands. While early milestones of Table 1-1 show a general direction

of the PLC toward a modular device capable of communicating to I/O, a programming terminal

and to other PLCs, the PLC of today is also capable of communicating over a highway to a

Human Machine Interface (HMI). PLCs are also capable of reading I/O from a variety of

sources including I/O through other PLCs. I/O may be distributed using a number of different

configurations. Some I/O may use a proprietary network while other I/O may use a public

network or highway such as Ethernet. Connectivity to intelligent devices has increased through

the years as well with PLCs interfacing to most types of manufacturing equipment such as bar

code readers, weigh scales, servo motors and other intelligent devices.

At one time PLCs were simply known as the PC. With IBM and the introduction of the personal

computer, naming standards had to change. PC was used for the personal computer so PLC

manufacturers changed the name to Programmable Logic Controller. At some time during this

early development of the PLC, Allen-Bradley trademarked the PLC name. The name PLC has

been used by most engineers to describe the product known today as the programmable logic

controller.

Liptak considers the reasons in his book for the popularity of PLCs. They are:

 “Ease of programming and reprogramming in the plant

 A programming language that is based on relay wiring symbols familiar to most plant

electrical personnel

 High reliability and minimal maintenance

 Small physical size

 Ability to communicate with computer systems in the plant

 Moderate to low initial investment cost

 Rugged construction

 Modular design” (from Process Control by Liptak)

The programmable controller of today has grown in capability and shrunk in size from the first

and second generation PLCs of the 1970’s and 1980’s. Where relays, timers, and counters were

the concern of early design, inclusion of numbers and numeric manipulation quickly became part

 Ch 1 Introduction 10

of the PLC. Instructions for comparing, adding, subtracting, multiplying and dividing of

numbers were added to the language. As engineers demanded more sophistication from their

PLC, designers turned to the microprocessor and, in part, emulated the instruction sets of the

popular microprocessors of the day. Shift, Rotate, AND, OR, XOR and other instructions from

the microprocessor were added. Finally added were floating point numbers and more

sophisticated instructions to handle complex algorithms such as the FIFO and LIFO stack

operation and the PID block.

The German manufacturer Siemens first introduced Statement List as its primary language for

the PLC. Statement List or STL was introduced to incorporate the power of the microprocessor.

This was accomplished by implementing a version of assembler language, a more difficult

language to master but one that was more flexible than Ladder. In general, the German Siemens

is considered more powerful but difficult to learn. Implementation, on the other hand, is usually

simpler with the Siemens approach. As the text is used, hopefully these opinions will become

more evident.

Step 7 is the programming language used to program the Siemens PLC. Newly introduced is

Step 7 Basic for the new Siemens 1200. Later, the same language introduced for the 1200 will

be introduced in the 300 and 400 lines of processors. STL will give way to SCL, a Pascal-type

language and the assembler language will be dropped. While different languages will be used

for different applications, Ladder or LAD will suffice for many early applications. Becoming

familiar with LAD and its use will be a primary early concern. Later, use of Function Block and

SCL will provide methods to better describe some applications. Also, the use of grouping of

logic into function blocks will provide a method of encapsulation of logic similar to the

programming language C’s function, structure and class environment.

A look at hardware is important but will not be stressed. The use of language for development of

control of a process will be stressed. Hardware changes with cost and function. Use of hardware

for writing programs is necessary. Study of certain types of hardware instead of the

programming will not be emphasized.

S7 refers to the newer lines of processors from Siemens. There is a S7-200 which is being

phased out with the 1200’s introduction and the S7-300/400 lines. The S7-200 has little in

common with the 300/400 since it was developed by the TI engineers at the time that Siemens

purchased the TI PLC division in the early 1990’s. The earlier S5 processor also is being phased

out. It is an older model, a contemporary to the Allen-Bradley PLC-2 and PLC-5 processor.

From an article on the Omron website:

“S5 is an old model, who was a contemporary of AB-2-PLC and PLC-5. S5 is the Intel 8031

series of microprocessors, which Siemens has licensed the production is based. They also own a

coprocessor, which is used in some models S5 gear single Boolean logic. Siemens pressed

overwhelming number of features from simple 8-bit processor. Punishment for this, however,

that a statement S5 was very primitive and only slightly higher than the 8031 assembler. Look at

the 8031 assembly and S5 Instruction List (IL), and you see the similarities. In contrast, AB has a

different approach and use the mini-computer technology in their designs early PLC. Early

 Ch 1 Introduction 11

PLC2S used 4 processors AMD 2900 bit slice to a separate 16-bit processor. It was expensive in

terms of hardware, but they had fewer restrictions in the software caused.”

The use of PLCs gives one the reason why a language such as LAD is used instead of C for

writing programs for manufacturing applications. It is simply quicker and cheaper to write. It is

interesting to note that the PLC is perhaps changing its name again (from PC to PLC first) to

PAC (Programmable Automation Controller. This new name may never catch on with some but

for the newer embedded control processor of today, it may.

The Allen-Bradley PLC has endured from the beginning. After overtaking Modicon in the early

1980’s, A-B never looked back at competition in the US (except for today’s challenge from

Siemens). The need for a fundamental knowledge of Allen-Bradley programming is required as

well as Siemens. Today, both are required.

The PLC’s Microprocessor Background

PLCs are closely related to computers because of their computational abilities and logic solving

speed. PLCs receive inputs, solve logic, and set the appropriate outputs based on the inputs and

programmed logic. Unlike computers, a program in one part of the PLCs memory cannot lock

out a program in another part of memory. An errant program statement cannot cause all

programs to stop execution, a very important concept if electricians and people other than the

original programmer are to be allowed to change program statements. However, with advances

of instruction sets to include program interrupt instructions, it is not always guaranteed that one

part of a program will not interfere with another and even stop execution of the system.

The PLC can be broken down into these four basic components:

1) Central Processing Unit (CPU)

2) Memory

3) Inputs and Outputs (I/O)

4) Power Supply

 Ch 1 Introduction 12

Power

Supply

(3)

CPU

(1)

Memory

(2)

Inputs

(3)

Outputs

(3)

Programming Device Communications Interface

Analog Inputs

Discrete Inputs

Analog Outputs

Discrete Outputs

 Fig. 1-1 Block Diagram of the PLC

Storage memory provides for variable storage and retrieval. Recipes and other table information

reside here as well as the variables used in logic. Programming more sophisticated applications

such as recipes hint at the using the PLC for more sophisticated applications. A basic rule for

LAD logic has been that it must be maintainable by people other than professional computer

programmers. This includes maintenance personnel who will be used to maintain the system

once installed in a plant. As programs grow in complexity and length, ways have been sought to

again make the logic simpler to implement and trouble-shoot. Although memory is used for a

number of functions, the use of LAD only as a language in the PLC falls short in its ability to

handle complex data storage and math arrays. Also, because of the complexity of larger

programs, a change in one area can affect other areas, causing hardship when changes need to be

made. Language selection is the most important aspect of application development.

Many “religious wars” were waged in the 1990’s involving the choice of the PC or PLC for

automation. Those using the argument that the PLC would be out and that PCs would be found

in all applications, while not discounted, were not considering the unique capabilities that PLCs

had that the PC could not be counted on to deliver. The PLC could be counted on for their

ruggedness and ability to restart even in the most difficult conditions. Distributed I/O was

counted on to read on a consistent basis all the I/O in the system and report to the cpu. What PCs

were capable to deliver was the openness and flexibility and very high performance levels. PLCs

have always lagged their PC cousins in these areas but have not given ground based on their

overall advantages that cannot be discounted such as ruggedness. From the Siemens text

Milestones in Automation (pg 154) by Arnold Zankl, Zankl describes the choice of PC or PLC:

 Ch 1 Introduction 13

“Experts estimate that in 2005 over 90% of all automation solutions were implemented with

programmable controllers. So, contrary to many forecasts, the PC has not replaced the standard

PLC.”

The PC will not displace the PLC but which PLC emerges as the dominant platform or language

is still to be determined.

PLC Hardware and Safety

Inputs are devices such as limit switches, push buttons, photo-eyes, proximity switches, and

relays from other systems. Outputs are devices such as lights, relays, motor starters, solenoids.

Motors and other outputs capable of producing motion must be controlled in such a way that the

machine is run safely. The PLC must control the process safely from the moment the machine is

turned on until the machine is turned off for the day or year. PLC programs must be written in

such a way that all events of the machine are monitored in order to guarantee a safe and orderly

control of the machine.

PLCs were not viewed as being as safe as relays when first developed. Engineers did not trust

the computer as much as the simpler relay. This view changed as PLCs became more reliable.

Interestingly, PLCs were made to resemble rugged equipment so engineers would accept them in

the rugged industrial environment. Today, PLCs are manufactured that easily could fit in the

palm of one's hand. These PLCs have the same error checking and hardware ruggedness as the

big PLC of the 1970's. Ironically, these little PLCs have much more functionally with far

superior instruction sets and faster scan times. They remind one of the evolutions of the

hand-held calculator or the personal computer as the old box has given way to the more powerful

yet less expensive new box.

The design of the functional aspects of the system must include all the electrical and

programming aspects of the system as well as the mechanical, fluid power, air power and

guarding systems.

The safety system runs in tandem with the production system. It must not impede the production

system but run in parallel with it and oversee any hazards. The focus of the two systems is

somewhat different. The production’s system focus is on throughput. The safety system is

focused on protection.

A safe system is not entirely possible and a risk is always present. The purpose of the safety

system is to reduce the risk to acceptable levels. An absolutely safe system is not possible.

 Ch 1 Introduction 14

How PLCs Solve Logic

Programming a PLC requires a program that solves the same basic logic again and again

guarding against the unexpected and keeping the machine running in an acceptable manner.

There must be an orderly flow to the logic to control the machine. PLCs all follow the same

general format utilizing the following four steps:

1) initialize from a safe state - usually off

2) sense inputs

3) solve logic in the program

4) outputs turned on or off to mechanical devices

Steps 2, 3, and 4 are repeated again and again very rapidly to provide the orderly solving of logic

and simulation of relays, timers, and counters. The process, while involving a number of

complex actions, breaks down into the following:

 Initialize Program Sense Inputs Solve Logic Set Outputs

Sense Inputs Solve Logic Set Outputs

Sense Inputs Solve Logic Set Outputs

Sense Inputs Solve Logic Set Outputs

 Fig. 1-2 Solving the PLC Program Scan by Scan

This process repeats each one to 5 millisecond and is referred to as the scan of the PLC. Each

repeated sensing of inputs, solving of logic and setting of outputs is a scan of the PLC.

Siemens describes the cycle time of a processor as the entire time needed to read the inputs,

execute the program one time and process the outputs. Their blocks are divided into networks

and each network is divided into a number of statements. The time line is described as follows:

 Ch 1 Introduction 15

1. Statement

2. Statement

3. Statement

4. Statement

Network 1

Network 2

Process-image Input (PII)
Read and store all input signals

Network n

Last Statement

Process-image Output (PIQ)
Write output signals

Program-

execution-

time

Cycle-

time

Fig. 1-3 Cycle Time of the Siemens PLC

There must also be an easy way to start and stop the PLC and its program from executing. This

is referred to as the modes of stop and run (or program and run). A running PLC program is

analogous to turning on the power to a relay panel. When power is turned on, the machine

responds in an orderly way per the design of the engineer and the wiring of the electrician.

Likewise, when the PLC is turned from program to run, the CPU begins executing the

application based on the rules of the program. These rules form the basis for the operation of the

system. First, outputs are defaulted to an off or pre-defined state. Then, as the inputs are read,

the program is solved sequentially one logic statement at a time. Outputs are turned on or off

based on the program and the input conditions. If a program is written and configured correctly,

the outputs should fail to a safe state. Some outputs may be required to turn on if the processor

fails. Most devices are designed so that if the controller fails, the output turns off and the device

being controlled returns to a safe state. In other words, most but not all outputs turn off when the

program returns to the program or non-running state. For safety's sake, design a system to return

all outputs to the safe state, either on or off, when the program is not actively running a machine.

And when the program is running a machine, devices are programmed to run in only a safe

manner. This is a main concern of the programmer, to design a safe machine as well as a

working machine.

Richard Morley describes in his own way the invention of the PLC through a number of youtube

videos. While they are not the most watched videos on youtube, you may try them sometime. It

is interesting to note that the philosophy of creating the PLC was for simplicity and the use of if-

then statements. Really, all the statements are of this type – if-then.

 Ch 1 Introduction 16

PLCs in World Economy

Manufacturers of PLCs have been many and varied in the past with a stiffening competition over

the last twenty years. The effect has been a thinning of the ranks of PLC vendors. It costs much

more to bring products to market than it did a few years ago. Foreign competition has caught up

and in many ways surpassed domestic PLC manufacturers' technology. A number of buy-outs,

consolidations and joint operating agreements have thinned the number of PLC manufacturers to

a few. Allen-Bradley is the mainstay American company producing PLCs. Also in the US are

General Electric and the combined Modicon-Sq D PLC organization. Siemens in recent years has

made significant inroads in the US market and overtaken all but Allen-Bradley. In Europe, the

dominant PLC manufacturer is Siemens and in the Far East, Japan's Omron and Mitsubishi. The

emerging manufacturing base in China favors Siemens although competition is very strong

between many PLC manufacturers in China as well as in Mexico and Central and South

America.

PLCs vary in size and type in a way similar to other manufactured products. Common to most

manufacturers are the full size, compact, mini, micro and nano versions. Not surprisingly, the

Japanese tend to dominate the mini, micro and nano end of the product while the German and

Americans tend to dominate the larger models. This is changing, however, with a number of

American models getting smaller and smaller as well as the Japanese pushing upward into the

larger models.

Global PLC Markets Share – Historical Trends

Fig. 1-4 Global PLC Market share in 1982/83

A view back to the early 1980’s gives the major PLC vendor as “other” with the largest brand

being Allen-Bradley. They were just ahead of Gould-Modicon who had dominated much of the

 Ch 1 Introduction 17

earlier decade of the PLC market. Third was Siemens followed by Texas Instrument and

IPC/ISSC. Four of the top 5 PLC vendors were from the US and the American PLC vendors

tended to dominate.

By 1993, Siemens had overtaken Allen-Bradley with about 25% of the world market. Allen-

Bradley was still first in the US but the market had globalized. Mitsubishi was third and Omron

fourth. Modicon had been purchased by AEG and was still in fifth place. Texas Instruments

was now part of Siemens as purchases of controls companies by other controls companies

intensified. See Fig. 1-5 below:

Fig. 1-5 Global PLC Market share in 1992/93

Since 1992, Siemens has continued its place as number one and widened its lead somewhat.

Allen-Bradley continues in a strong second place. One company not known for its PLC entry

appeared in the 2007/2008 market survey – ABB. ABB is a very strong controls company in the

world and had been absent from earlier surveys but appears on this analysis although in a small

position overall.

 Ch 1 Introduction 18

Fig. 1-6 Global PLC Market share in 2007/2008

Choice of a PLC must include Siemens as well as Allen-Bradley for the US market. Siemens’

strength can be seen in its attention to detail and its global strategies. One should thoroughly

study the languages found in the Siemens PLCs in order to write logic for the world market.

STL (Statement List) should be learned as well as LAD (Ladder) and FBD (Function Block

Diagram). It is not enough to insist only on LAD with an occasional subroutine written in FBD

or other language.

31%

22%
13%

8%

6%

4%

3%

2%

11%
Siemens

Allen-Bradley

Mitsubishi

Schneider

Omron

B & R

GE/Fanuc

ABB

other

Fig. 1-7 Global

PLC Market

June 2018

 Ch 1 Introduction 19

 A Long Quote from Siemens Milestones Text

From Choosing a PLC from Milestones in Automation by Arnold Zankl – Siemens: (pg 53)

“Programming of the first programmable controllers

To those involved in Europe and the US, it was clear from the start that, to be widely accepted,

programmable controllers would also have to be easily programmable by skilled workers,

electricians, installation engineers, and manual workers – not just by expert programmers. It was

important to meet the target groups on familiar territory with regard to their existing level of

technical know-how.

The plant electrician could, of course, read circuit diagrams. Engineers were somewhat familiar

with Boolean algebra or could easily learn it. And young people who already know how to use

progamming languages could quickly learn how to use menmonic instructions.

These basic programming languages had asserted themselves relatively quickly, and these are

now defined in the global standard IEC 51131.1: Ladder diagram, function block diagram and

statement list resp. instruction list.”

The Siemens text continues on the next page (54) as follows:

“Siemens had at first used STL programming exclusively and been very successful with it. It

seemed reasonable to program something in the way people think of it and describe it verbally.

High education standards in Germany and Europe also supported this approach.

In the USA, where training for skilled workers was generally less intensive than in other

countries, the ladder diagram, derived from the circuit diagram, dominated from the start.”

To study the Siemens PLC in the US, one must recognize a change in attitude that the European

worker has accepted for a much longer time – that programming must be flexible and written in

the language best suited for the application. The American student must follow the rigors of the

STL or SCL and FBD langauges as well as LAD in order to successfully compete in the

marketplace today.

 Ch 1 Introduction 20

IEC 61131-3

IEC 61131-3 was intended to achieve the long-term aim of creating user software largely vendor-

independent and being able to port it to devices of difference to system integrators who want to

use different target systems. The chart below compares Allen-Bradley, Siemens and the IEC

61131-3 international PLC language:

Allen-Bradley RSLogix Siemens Simatic IEC 61131-3

Ladder
Relay Ladder

LAD
Ladder Diagram

LD
Ladder Diagram

Based on circuit
diagram

FBD
Function Block Diagram

FBD
Function Block Diagram

FBD
Function Block Diagram

Based on switching
circuit systems

SFC
Sequential Function
Chart

S7-Graph for
sequencers

SFC
Sequential Function
Chart

For sequential control

 S7-HiGraph State-
transition diagrams

 For asynchronous
processes

 CFC
Continuous Function
Chart

 In the form of
technology oriented
diagrams

 STL
Statement List

IL
Instruction List

Similar to assembler

ST
Structured Text

S7-SCL
Structured Control
Language

ST
Structured Text

Pascal-like high-level
language

 Table 1-3 PLC Languages

(The following article by Jeremy Pollard is re-printed with permission by the author. The article

will explain what IEC 611131-3 is and what the benefits are. While this topic is beyond the

scope of an introductory chapter, this seemed to be the only place to include it.)

IEC 61131-3 by the Numbers

The Programming Standard for Controllers: What It Is, What It Is Not and Its Benefits

By Jeremy Pollard

The International Electrotechnical Commission's (www.IEC.ch) 61131-3 international standard

"Programmable Controllers—Part 3: Programming Languages" was published in 1993 after 15

years in development and first used for PC-based control programming in the 1990s. Typically

programmable logic controllers (PLCs) had their own vendor-developed programming platforms,

but in the past decade, major PLC vendors from Europe and North America initiated and

supported the new standard with their new programming platforms.

http://www.controldesign.com/voices/pollard.html
http://www.iec.ch/

 Ch 1 Introduction 21

The intent of IEC 61131-3 is to normalize PLC and control systems' programming by

standardizing functionality such as program entry, instruction visualization, data types and

syntax. The general requirements section includes models for software, communication—

external as well as internal instruction and variable parameter passing—and programming. The

model functions are as follows:

 The software model introduces the following configuration concepts: resources such as

CPUs; tasks such as executable application software; named variables used for storage;

and communication paths (Figure 1). An IEC-based hardware "client" could run multiple

tasks in one configuration or have multiple configurations.

 The communication model specifies how data is passed to different tasks or

configurations or within the same task. Global variables are introduced.

 The programming model is tied closely with the concept of common elements, which

enable the use of common data types, variable declaration and data formats such as dates

and times. Program organizational units (POUs) also are common elements.

IEC 61131-3 Can Go Beyond

Figure 1: A conventional PLC's software (on the right, in red) consists of one resource, running

one task and controlling one program. However, a controller using IEC 61131-3 (on the left) can

go beyond PLCs by providing a multi-tasking, real-time environment that can be used in a

broader range of applications without requiring users to learn added programming languages. If

vendors allow it, this multi-tasking means a function block-controlled task could run along with

a ladder logic task with data sharing and global variables. At the highest level, the entire software

required to solve a particular control problem is called a Configuration. Within it, one or more

resources can be defined. A resource is like a CPU in the system, and it includes one or more

tasks. These control the execution of different parts of programs, called functions or function

 Ch 1 Introduction 22

blocks, which are the basic building blocks of data structures and algorithms. All of these can

exchange their information via the global or direct variables, even to the outside world via

communication functions such as OPC.

These POUs were developed to reduce the often-implied meanings of instructions and blocks.

There are three types of POUs defined in the standard. The program POU is the program; no

news there. The function-block POU is a program block with inputs and outputs used for tasks

such as timers and counters. The function POU lets various program elements extend the

instruction set of the configuration. The intent of these POUs is to reduce the programmatic

differences between suppliers, so a timer is a timer, regardless of who provides it.

In addition, the standard defines data types, such as Boolean and integer. It also defines the use

and format of derived data types and functions, which must conform to the previously mentioned

standard data types.

Meanwhile, the programming model extends a PLC-type programming environment with three

languages and two graphical representation languages. Ladder logic is most used in discrete

applications and is the most widely coded language in automation today. It is mainly used and

supported by the North American PLC vendors.

Instruction List, which is a rudimentary, assembler-type language has been a European

programming staple for years. The third language is Statement List, which is similar to Pascal.

As a result, the graphical languages are Sequential Function Chart and Function Block. These are

graphical representations of processes and have underlying code written in one of the three

languages or in an alternate language, such as C++.

Finally, the standard defines the abstraction between the IEC model and the PLC/control

hardware by using device tags and not addresses. Similar to programming in a high-level

language such as Visual Basic, it allows the programmer to define a memory point, not by

address, but by using a descriptive name. The standard defines the characters you can use in the

description. The outside world is tied into the model based on the hardware used.

The desired effect of the standard is to reduce the user's learning curve between vendors, and

with work beginning as early as 1978, it was developed to meet that need.

What IEC 61131-3 Is Not

The published IEC 61131 standard encourages extensibility, meaning any company that writes

an IEC 61131-based product can add things to its "standard" product as long as it tells the user

what changes and additions have been made relative to the standard. However, IEC 61131 isn't a

standard. It is a specification for vendors that want to develop a control software programming

environment according to a set of guidelines.

PLCopen (www.plcopen.org), the global association supporting IEC 61131, says you can't have

a standard without certification. However, no one and no company can claim that its ladder logic

http://www.plcopen.org/

 Ch 1 Introduction 23

editor creates compliant code. There's no way to certify it. And yet, one of Rockwell

Automation's web pages for RSLogix 5 makes claims about the "RSLogix family of IEC-1131-

compliant ladder logic programming packages."

In addition, even if it did create compliant code, Rockwell Automation would just need to say

where the extensions are and what effect they have on that compliancy, and then they can claim

compliance.

To make sure I wasn't being overly biased, I enlisted colleagues on the Automation List at

www.Control.com. "The conformance criteria are so general, it is virtually meaningless," says

independent consultant Michael Griffin about compliancy.

Also, a published PLCopen document states, "The overall requirements of IEC 61131-3 are not

easy to fulfill. For that reason, the standard allows partial implementations in various aspects.

This covers the number of supported languages, functions and function blocks. This leaves

freedom at the supplier side, but a user should be well aware of it during his selection process."

This doesn't help us very much.

The original intent of the specification or standard was to create a common platform for control

software development. When the programmable controls industry emerged in the 1970s, all

software was written using dedicated hardware and firmware. With the advent of the personal

computer, vendors developed their own development environments. It is no different today. The

software programs that have been developed support only the vendor's hardware. There is no

common platform here. We are no further along than we were 20 years ago.

For instance, using RSLogix 5000 or Schneider Electric's Unity is no different than when we

used fixed programming terminals. You can't share programs, although PLCopen is trying to

develop an XML transfer specification.

I anticipate that vendors will have import routines, but few, if any, will have export routines.

Likewise, the specification does not cover off-the-scan issues and program-execution methods.

Process behavior most likely will change on different hardware platforms, since the software

environment is different.

Some of the visualizations of the code are supposed to be close. If you look at

ControlLogix5000, which Rockwell Automation states is IEC 61131-compliant, and compare the

visualization with that of KW Software, for example, there won't be much similarity.

Tag-based programming is a plus, but even in the 1980s, many products had the ability to use

symbols. With IEC 61131, you have to use symbols, but the length of the tag names is variable.

You can't use a 40-character symbol with a product that supports only 20.

To me, IEC 61131 is similar to SQL, UNIX or C. They're standard products to some degree, but

they're not called standards. The varying flavors don't interoperate, because, before the world

went Microsoft, some compilers had very different syntax and ways of doing things.

http://www.control.com/

 Ch 1 Introduction 24

In fact, Julien Chouinard, managing director of ICS Triplex–ISaGRAF, calls IEC 61131 a

compromise. However, while I think IEC 61131 has fallen short of expectations, this doesn't

mean there are no benefits to the specification.

Benefits of IEC 61131-3

Now, make no mistake about IEC 61131-3. We're still in the same environment we were in

before its creation. Rockwell Automation, Schneider Electric, Siemens Industry, GEIP and Wago

all have their own programming environments. The business of automation won't allow for real

interoperability of these competing products.

The main difference from 20 years ago is that there is some form of commonality. There are

some good reasons to use an IEC 61131-based product. Tag names permit abstraction of the

hardware I/O, so databases from product to product could be maintained externally. All will use

tag names-based variable allocation and typically the common elements, such as Boolean, will

behave the same. That doesn't mean, however, that all vendors support all the common elements.

Most products will have all five languages. A large benefit of an IEC 61131-integrated

development environment (IDE) is access to the function block part of the software. The power

in function block programming is tremendous. This is the type of programming the older DCS

products had 20 years ago. You can program a very complex part of the application and have it

hidden behind a block. Some argue that this improves troubleshooting capabilities.

In return, it requires a better programming skill, as well as a good handle on the project scope

and project management. This is foreign territory to many ladder programmers.

A selling feature of the standard is the ability to develop control strategies in the right language.

While I agree with this, the plant floor maintenance staff usually doesn't include a structured text

guru. This is scary for the controls engineer who develops the application, so oftentimes he'll just

use ladder logic. Therefore, one of the major benefits of function-block programming is left

untapped as a result.

Proponents of IEC 61131 swear by its training and investment benefits. They say if you use

Company A's IEC 61131, and later you have to use Company B's IEC 61131, then you already

know how to program the hardware. This is not necessarily so, but there is some truth to it.

Many companies use a development package from 3S, some use a product from Softing, and

others create their own. If an OEM used IEC software from four different hardware vendors, and

they all licensed their software from one company, the OEM stands a better chance of being able

to migrate the learning curve to the new hardware and of being able to reuse the software.

Will the training cycle be shorter? Probably. But from vendor to vendor, there is some level of

commonality that can be borrowed, but the impact may be limited.

 Ch 1 Introduction 25

Will IEC 61131 help the maintenance person trying to solve a problem at 3:00 a.m.? For most

user companies that standardize on a single hardware platform, the answer is "no." They'll get

used to whatever the software tool is. IEC 61131 isn't important.

It might be important to you if you leave your company and have IEC 61131 on your resume. It

surely can't hurt.

If you're a machine builder or a manufacturer with multiple vendors that all use IEC 61131,

maybe it helps. There are some inherent similarities that could help getting refamiliarized with a

hardware platform or a software troubleshooting tool, but I think this is a personal function rather

than a software tool function.

No doubt IEC 61131 is here to stay. Early misunderstandings of the benefits, and resulting

misconceptions of what an IEC 61131-based product actually was turned off many potential

users.

Open is as open does. IEC 61131 is the same. It is simply a platform for a software product

design tool for hardware. It provides some benefits or the OEM and the user, but mainly the

vendors benefit, in my perception.

It is no panacea. It can help in our quest for a better automation platform, but we will leave that

for IEC 61499, a true standard. As long as we don't screw it up.

Jeremy Pollard has been writing about technology and software issues for many years. He is

publisher of "The Software User Online," has been involved in control system programming and

training for more than 25 years and was previously North American managing director of

PLCopen (www.plcopen.org), which drafted IEC 61131.

Some Key Features of IEC 61131-3

Structured Software – through use of configuration, resource and function blocks

Strong Data Typing – by using languages that restrict operations so they only apply to a

 appropriate data types

Execution Control – through use of tasks

Complex Sequential Behavior – through sequential function charts

Software Encapsulation – through use of function blocks, structures and complex data types

The standard allows for the creation of programs that are highly structured, yet flexible. It

provides tools for creating programs with complex sequences and promotes the creation of

reusable modules or function blocks.

(end of article by Jeremy Pollard)

http://www.plcopen.org/

 Ch 1 Introduction 26

Other Topics Close to PLC’s

Topics of interest in a PLC text in addition to programming languages should include:

1 Distributed I/O

2 Fabrication of a system including the cabinet, lay-out, drawings

3 Fault tolerant/safe systems

4 RS485 networks including Profibus and DeviceNet, simple

protocols and simple ASCII

5 Use of HMI (Human Machine interface)

6 Ethernet networks, wireless

7 Relation between PLC and CNC and PCS (DCS), robotics

8 Sensors and actuators

9 Batch Systems

10 MES (Manufacturing Execution System) to include

a. Business Modeling Factory

b. Enterprise Asset Management

c. Plant Maintenance Management

d. Dispatch

e. Trace and Tracking

11 ERP(Enterprise Resource Planning) (or how to make it all work

together)

 Table 1-4 Subjects of Interest to the PLC Programmer

While not each topic will be discussed in detail, the purpose of the text is to include as much

about each of these topics as possible.

Some topics that are not included but should be of interest to the control engineer include:

1 Chemistry

2 Fluid Flow (sizing of valves, pumps, pipes)

3 Statics and Dynamics (sizing of servo systems, motors, etc)

4 Local area networks, wide area networks

5 Database development

6 Automatic Control – modeling using statistical methods and dif eq

7 Machine Design

 Table 1-5 Subjects Not Included but of Interest to the PLC Programmer

Each of these areas may be of interest to the student but will not be discussed in detail in this

text.

 Ch 1 Introduction 27

Summary

The emphasis is on programming with LAD and other languages in the most efficient manner to

compete in the world marketplace. While hardware will not be emphasized, its use and inclusion

in any text is necessary.

The following picture is from a Siemens school in Germany in 2008. These are instructors from

around the world for PLCs. I was there but not in the picture.

 Ch 1 Introduction 28

Exercises

1. *A specification by this company was written that created the first PLC. Name the
company and town (or area) in which this occurred:

2. *Name a PLC manufacturer that was absorbed by another PLC manufacturer.

3. *Name a PLC manufacturer that would be found predominantly in a Japanese auto
company’s manufacturing facility.

4. *Name a PLC manufacturer that would be found predominantly in a European factory.

5. *Name a PLC manufacturer that would be found predominantly in a US factory:

6. What is the significance of the picture below to the study of PLCs?

 Ch 1 Introduction 29

ENGINEERING COMMUNITY REMEMBERS PLC INVENTOR DICK MORLEY

Morley, who died in October 2017, was revered as much for his ingenuity as

for his modesty and the encouragement and mentorship he provided other

engineers. REBECCA ZUMOFF — DECEMBER 19, 2017

Dick Morley, who passed away Oct. 17 at 84, was made of engineering legends. He said he created the first

programmable logic controller (PLC) because he had a hangover on New Year’s Day and he needed to save

time. He dropped out of MIT because he didn’t want to learn German. He also quit an engineering job because

they wouldn’t let him ski on weekdays when the lines were short. He rode Harleys, fostered dozens of

children, and had a hand in creating the floppy disk, anti-lock brakes, and automated vehicle control. Morley,

who helped found Modicon and Andover Controls Corp, which are both now part of Schneider Automation

Inc., was also the author of several books and a regular contributor to industry magazines.

Morley was revered as much for his ingenuity as for his modesty and the encouragement and mentorship he

provided other engineers.

“Dick Morley wasn’t just the inventor of modern-day automation-he was also a mentor and a friend to many of

our members and leaders around the world,” said International Society of Automation President Steve

Pflantz in a written statement. “He was a one-of-a-kind person, someone you could never forget. His humor

and wit, along with his incredibly creative way of looking at life, made him a force for good in our industry,

our society, and the world. He will be missed.”

Morley was an angel investor for many young engineers and held annual “Geek Pride Day” festivals at his

barn in New Hampshire, which he had converted to a workshop for engineering innovation. He was never

comfortable being called the inventor of the PLC because he said others played a role in its creation.

“When we first met at a trade show many years ago, I praised Dick, the inventor of the PLC, for being the

reason any integrators have a job at all. ‘Oh, I didn’t invent it,’ I remember him responding. ‘That was just an

idea whose time had come, and I just happened to be the guy working on it,”’ Rick Caldwell, president and

founder of SCADAware wrote in an article after Morley’s passing. Caldwell considered Morley a mentor, and

said he came up with the name SCADAware.

“He never wanted fame, he only wanted to invent new things,” wrote Walt Boyes, editor and publisher of

the Industrial Automation and Process Control INSIDER. “You’d think that the man who invented the floppy

disk, the handheld terminal, zone building HVAC, was the father of the PLC, and created the people mover for

Detroit and Disney World, among the more than 100 patents he held, would be a household name, but Dick

was a surprisingly private individual who didn’t really want or enjoy credit for all that, and the limelight. So

names like Bill Gates and Steve Jobs became famous, while Dick Morley just went on inventing.”

Despite his accomplishments, Morley didn’t die a wealthy man. He spent much of his savings on medical

treatments for his son, who died of aplastic anemia at the age of 32, and for his wife of 56 years, who died in

2012. Friends and fellow engineers started a GoFundMe campaign to help him pay his medical bills a few

years after his wife died. The campaign was also used to purchase him a modest headstone.

In Morley’s honor, the ISA started the Richard E. “Dick” Morley Innovation Scholarship with a $50,000

endowment. The organization also pledged to match the next $50,000 in donations.

“We know that one of the most important parts of Morley’s life was his work with young people,” Pflantz said

in the scholarship announcement. “He was passionate about giving kids a chance to innovate, to redefine their

lives, and to make a difference in the world. We intend to make sure that this scholarship fund continues that

legacy in some small way.”

https://www.processingmagazine.com/author/rebecca-zumoff/
https://www.processingmagazine.com/engineering-community-remembers-plc-inventor-dick-morley/
http://www.sme.org/MEMagazine/Article.aspx?id=30299
http://www.sme.org/MEMagazine/Article.aspx?id=30299
https://www.isa.org/news-and-press-releases/isa-press-releases/2017/november/isa-honors-automation-visionary-and-legend-dick-morley-with-scholarship-fund/
https://www.scadaware.com/blog/memory-dick-morley/
http://www.spitzerandboyes.com/dick-morleys-obituary-from-the-pages-of-the-insider/
https://www.gofundme.com/lv6bho
https://globenewswire.com/news-release/2017/11/07/1176758/0/en/ISA-honors-automation-visionary-and-legend-Dick-Morley-with-scholarship-fund.html

 Ch 1 Introduction 1

Chapter 1 INTRODUCTION

Introduction to PLCs

Programmable logic controllers (PLCs) were introduced to industry between 1968 and 1970 as a

way to replace large expensive panels of relays, timers, and counters. Automotive manufacturers

were looking for ways to simplify start-up of new car lines after model changeovers each year

and save money in the cost of manufacturing installations.

Historically, relays have been used since the late 1800's to control simple processes. They were

used in the early days to control railroad crossings. Before simple relay logic was introduced to

control railroad crossing arms and alarm lights, accidents at these crossings were contributing to

a high toll on human life.

The term “relay” was coined as the name of the device invented by Samuel F. B. Morse who

invented the telegraph. The relay was invented as a device to extend the signal or “relay” the

signal of the telegraph more than the 20 mile limit of electrical signals at the time of the

invention of the telegraph (1836).

Relays, timers, and counters had been the favored choice for electrical and systems engineers to

manufacturing facilities, especially in facilities with a large number of machines making discrete

parts. Automotive manufacturers top the list of this type of manufacturing. At the same time that

costs continued to rise for the engineering and construction of automotive assembly lines,

computers were becoming more numerous and less costly. There was, however, a general

discomfort among engineers to replace relays with computers. Most were reluctant to place the

computer on the plant floor. A compromise was necessary for the engineer that he would be

willing to accept. A computer that appeared to be relay-ladder logic to the electrician but able to

use the computing capabilities of a computer was the device envisioned. The result of this vision

is what is known today as the PLC (Programmable Logic Controller).

Relays as well as timers and counters were the first devices replaced by the PLC. Relays are

electromechanical devices that use magnetism caused by power flow through the circuit's coil to

energize a core and move a plunger with contacts attached. Contacts change state when the coil

is magnetized. Normally open contacts close while normally closed contacts open. Changing

contacts combine to complete other circuits. Combinations of relay contacts energizing coils

form the basis of Boolean logic. Boolean logic deals with the combination of discrete on-off

states to turn on or off other outputs.

The principle of using PLCs as substitutes for relays to reduce the wiring, panel fabrication, and

engineering cost looked very appealing to the early PLC user. Like most electronic devices

appearing in the early '70's, cost of the early PLC was high and functionality was not well

developed. Early PLCs were developed around a mini-computer or special purpose control

board. It was not unusual to pay $50,000 or more for a single PLC complete with I/O and still

use relays for the most critical circuits. These hybrid designs existed for many years until

 Ch 1 Introduction 2

engineers became convinced that PLCs were as reliable as the relay and could be trusted equally

to the relay circuit being replaced. Hybrid circuits using both relays and PLCs existed for many

years but have become too expensive for most automation applications in today’s market.

In a quote from Programmable Logic Controllers: An Emphasis on Design and Application

(Erickson, 2005) about the early PLC:

“The machine tool and automotive industries were large users of relay control systems. A simple

machine tool would require six months to a year to completely debug (Morley, 2001). Every

year, automotive manufacturing facilities would be shut down for two to three months in order to

implement the changes due to the new automotive models. The lost production due to these

changes was significant.”

Richard (Dick) Morley was credited with the invention of the modern PLC. Morley worked for

Bedford Associates in Massachusetts in 1968 when the PLC was first conceived. Dick Morley

later wrote a book, History of the PLC in 2001 published by R. Morley Incorporated. Morley is

commonly considered the father of the PLC.

Another quote from Morley in addressing the toughness of the PLC supplied by Bedford

Associates, the Modicon controller from Morley’s text and found also in Erickson’s text:

“Landis [a machine tool company] decided to purchase the MODICON units and not use the

PDP-14. When DIGITAL [sic] tried it get back into Landis, Landis wrapped a welder cable

(operating) around the 084 and poured Coke over the unit. The 084 kept right on trucking.

Digital retreated with grace.”

Other anecdotal competitive stories abound and make up part of the folk lore of the early PLC.

One about a PLC using 15 volt logic shows the competition between early PLC vendors. The

vender owning the 15-volt PLC inserted a spark plug in a waveguide and entered a vendor’s

show with the noise gun in hand (carefully concealed in a briefcase). All of the PLCs were

successfully shut down when the waveguide was pointed at their machine except the 15 volt

model. This actually happened in the early race to be the best and the toughest PLC in industry.

Toughness (in this case, noise immunity) was very important to the manufacturing engineer.

What happened to the vendor of the 15-volt PLC? Today this vendor no longer is in the PLC

market, displaced by the strong competition in the manufacturing marketplace.

There has been a great deal of interest about the origins of the PLC since those who were

responsible for the origination of the PLC have retired and many have passed on. The

competition for the selection of the first successful PLC is very interesting. It is repeated in the

following article by Randall Brodzik, a writer for Control Engineering and found in the

following 8/27/2014 article:

 Ch 1 Introduction 3

“Inside the competition for the first PLC

1971 The race to develop the first programmable logic controllers was underway inside

General Motors’ Hydra-Matic Transmission Division in Ypsilanti, Michigan, in 1970.

Three finalists had very different architectures.

In 1970, a fierce contest was being waged inside General Motors' Hydra-Matic Transmission

Division in Ypsilanti, Michigan. At stake was program ownership of what would become the

first programmable logic controllers (PLCs), and the outcome would shape not only the design of

the first PLCs, but also the success or failure of their advocates.

PLC incubator

It was natural that GM's premier manufacturing technology group, Hydra-Matic, would be the

incubator of the PLC. A nationally recognized technology leader, Hydra-Matic had installed one

of the early IBM 1800 computers, the IBM 1801.

Richard Lundy, an owner of one of the original PLC suppliers, tells the story of when Ed

O'Connell, a Computer Group engineer, didn't think GM was getting enough support from IBM.

‘An entire test line was running off of the one computer,’ Lundy said, ‘which made it very

vulnerable, and Ed didn't like the support he was getting. So he called Watson.’ That's Thomas

Watson, Jr., the son of IBM's founder and company CEO. Support for Hydra-Matic's IBM

system quickly improved.”

In the following, Dave Emmett is described as the developer of the ‘Standard Machine

Controller’.

 Ch 1 Introduction 4

“In April of 1968, a young Hydra-Matic engineer, Dave Emmett, proposed the development of

what he called a ‘Standard Machine Controller.’ The controller he envisioned would replace the

relay systems that controlled machine operations. Emmett was in charge of the Circuitry Group,

and he envisioned a machine that would reduce maintenance costs, improve machine diagnostics,

and decrease panel space.

Randy Brodzik, who later worked for Emmett, remembers that Emmett had a clear vision of

what was needed: ‘Dave said the goal was to develop a technology that would significantly

reduce the time it took to make changes to a machine control sequence. With relays, first you had

to do all the documentation, and then change all the wiring. It would take hours.”

Another group also was involved at GM. The description of this group follows:

“At about the same time, another group in Hydra-Matic was envisioning a different type of

machine control system for GM. The Computer Division had hired Information Instruments, Inc.

(3-I) to create a computer controlled assembly machine for the forward clutch line. This new

The letter at left was the original

invitation for vendors to supply

a system that would become the

original PLC for GM.

 Ch 1 Introduction 5

control system had no limits to the number of elements in a ladder diagram, included parallel

processing, and could incorporate complex Boolean equations.

Richard Lundy, a program manager for 3-I at the time, said the competition between the two

Hydra-Matic Groups was ‘pretty dramatic.’ He described the Circuitry Group as wanting to

duplicate existing ladder diagrams, while the Computer Group wanted to use nonsequential

programming, similar to that used in current end-of-line test systems, to provide a more robust

instruction set and reduce processing time. The advantages and limitations of each approach

would become clear as the project progressed.”

Finally, a specification was written and shopped that would deliver a completed system. The

RFP was a Request for Proposal. This form is described in the following:

“In April and May of 1968, work was done on a request for proposal that is remarkably simple

by today's standards. The RFP, issued in June 1968, included only four pages of design

specifications, including a requirement that ‘memory word length shall be at least eight bits.’

Douglas Brant worked on specifications for equipment coming into Hydra-Matic. He said that

there was a strong rivalry between the Computer Group and the Circuitry Group in developing

the specifications. ‘I guess it boiled down to people's territory,’ Brant said.

Of the many companies who received the RFP, three were selected for evaluation: Digital

Equipment Corporation (DEC), 3-I, and Bedford Associates, a consulting firm. Its products were

the DEC PDP-14, the 3-I PDQ-II, and Bedford Associates' Modicon 084. (The Modicon name

came from MOdular DIgital CONtroller.)” See the following evaluation of the three finalists:

 Ch 1 Introduction 6

A PLC was installed at GM in June 1969. Its description follows:

“In June of 1969, DEC's PDP-14 was installed to control a gear grinder. Richard Lundy says that

in spite of a very strong GM-DEC relationship, DEC's concerns about memory failure

significantly limited the PDP-14's competitiveness. To make a change to the DEC program, ‘you

had to send the client program in to them, and they would send you back a hardwired memory

board,’ Lundy said. Having to remove a controller's memory from the plant to make changes

would prove to make the DEC option unsustainable.

Richard Lundy's company, 3-I, was aligned with the Hydra-Matic Computer Group. Lundy said

that during the evaluation period, the rivalry between the Computer Group and the Circuitry

Group escalated. To the Computer Group, the advantages of higher level logic capabilities were

clear and the selection of the PDQ-II was an obvious one. The 3-I solution for the forward clutch

line, with its complex programming, had performed beautifully. Lundy said the PDQ-II quickly

became known within the Computer Group as ‘pretty damn quick.’

Emmett and the Circuitry Group advocated strongly for the Modicon 084. The programming that

was seen as a benefit by the Computer Group was seen as a detriment by Emmett's team.

Because Modicon's programming language was similar to the Group's familiar relay ladder

diagrams, it was expected to provide the smoothest transition and lowest cost for training and

support. Randy Brodzik recalls that Emmett had an implementation view of the project: ‘He said

that in order for this new technology to achieve wide acceptance, it needed to emulate what was

already in place.’

As an added bonus for Modicon, the 084 was the only controller built into a hardened package,

providing plant floor protection that the other two options did not. And Modicon won.”

This is the original

Programming Panel for the

Modicon 084. Yes, the

numbers were thumb-wheel-

switches which were very

hard to turn and left fingers

with callouses after entering a

program. Note that there is no

recording mechanism yet.

That will come later.

 Ch 1 Introduction 7

Definitions of the PLC

NEMA's definition (NEMA or National Electrical Manufacturers’ Association) of a

programmable logic controller is "A digital electronic apparatus with a programmable memory

for storing instructions to implement specific functions such as logic, sequencing, timing,

counting, and arithmetic, to control machines and processes." This definition gives a good

summation of the functionality of the modern PLC. A PLC must have each of these functional

components to be considered a modern PLC. Primarily, the PLC is used to control machines.

Programmable logic controllers have varied widely in what is considered a process or a machine.

A few PLCs have even been used to control the duration of water for irrigation systems or lawn

watering control. The view of what is a process has widened through the years. The modern

PLC may even used to control the ingredients sprayed on a car moving through an automatic car

wash.

 A definition of the PLC from Liptak’s Process Control states:

“A programmable logic controller (PLC) is an industrially hardened computer-based unit that

performs discrete or continuous control functions in a variety of processing plant and factory

environments.”

These definitions of the PLC, either from NEMA or Liptak, give an overall picture of a computer

with a special functionality partial to the automation market and able to control a variety of

different machines. The purpose of this text is to more fully understand the use and

programming of a PLC and understand applications of PLCs in factory automation.

In the US, the general trend was for the PLC to emulate or copy ladder logic as employed in the

standard relay ladder logic or schematic drawing of the day. In other parts of the world, as the

PLC was studied, this was not necessarily the case.

In Germany, for instance, STL or Statement List was introduced. From the Siemens book:

Milestones in Automation by Arnold Zankl is the following quote (p. 54):

“Siemens had at first used STL programming exclusively and had been very successful with it.

It seemed reasonable to program something in the way people think of it and describe it verbally.

High education standards in Germany and Europe also supported this approach.

In the US, where training for skilled workers was generally less intensive than in other countries,

the ladder diagram, derived from the circuit diagram, dominated from the start.”

While this statement may not be meaningful to some, the choice of American PLC vendors to

pursue Ladder logic while the German PLC vendor Siemens pursued another language, STL,

was significant and has had an impact on the marketplace. While the German machine later

embraced Ladder as a second language, the reverse has not occurred to any degree with the

American market keeping strong ties to Ladder and not embracing other languages.

Understanding a variety of languages and being able to program in the language most

appropriate for the application is of primary importance and should be a student’s goal.

 Ch 1 Introduction 8

Evolution of the PLC

From that beginning, PLCs have grown in popularity and capability to the extent that they can be

found in some part of almost every industry. PLCs are produced by a variety of companies

worldwide and several companies that made PLCs in the last 30 years have been forced out of

the business by ever increasing competition.

Listed in Table 1-1 below is a time line of the evolution of the PLC from its inception to the

modern PLC. See Table 1-1 for a portion of the time line for PLC development. Table 1-2

describes the Siemens PLC and its parallel development in the European market place.

“History of Programmable Logic Controllers (PLCs)

Table 6.5b from Process Control by Liptak

1968
Design of PLCs developed for General Motors Corporation to eliminate costly scrapping or
assembly-line relays during model changeovers.

1969 First PLCs manufactured for automotive industry

1971 First application of PLCs outside the automotive industry

1973
Introduction of “smart” PLCs for arithmetic operations, printer control, data move, matrix
operations, CRT interface, etc.

1975
Introduction of analog PID (proportional, integral, derivative) control, which made possible the
accessing of thermocouples, pressure sensors, etc.

1976 First use of PLCs in hierarchical configurations as part of an integrated manufacturing system

1977 Introduction of very small PLCs based on microprocessor technology

1978 PLCs gain wide acceptance, sales approach $80 million

1979 Integration of plant operation through a PLC communication system

1980
Introduction of intelligent input and output modules to provide high-speed, accurate control in
positioning applications

1981
Data highways enable users to interconnect many PLCs up to 15,000 feet from each other.
More 16-bit PLCs become available. Color graphic CRTs are available from several
suppliers

1982 Larger PLCs with up to 8192 I/O become available

1983
“Third party” peripherals, including graphic CRTs, operators’ interfaces, “smart” I/P networks,
panel displays, and documentation packages, become available from many sources

Table 1-1 Early History of the PLC

The PLC is an American invention but the European manufacture Siemens was quick to augment

its automation offering to include its own PLC. The first PLC comparable to the American

equivalent is the S3, Siemens’ first storage programmable PLC. From Milestones in Automation

by Arnold Zankl of Siemens is the following history of the Siemens history of automation

control and the PLC in Europe.

1957 First prototype controllers from Siemens with germanium transistors

1964
Second generation control and switching systems introduced with board-design using Euro-
card

1971
Third generation controllers introduced
S1 - using hard-wired logic
S2 - using electronic sequence processor

 Ch 1 Introduction 9

1973 S3 – first storage programmable PLC from Siemens (Simatic S30)

1976 First fault-tolerant and safety-related PLC for burner controls

1979 Simatic S5 introduced

1984 S5-135U multiprocessor PLC with up to 4 central processors for high-speed application

1986 Introduction of distributed I/O for Simatic

1988 Introduction of S5-155U with multiprocessor technology including floating-point arithmetic

1994 Introduction of Simatic S7

2000 Integrated drive systems

2002 TIA Totally Integrated Automation links data to IT domain

Table 1-2 History of the Siemens PLC

The advancement of PLC technology continues to the present day with newer PLCs introduced

to meet the customers’ demands. While early milestones of Table 1-1 show a general direction

of the PLC toward a modular device capable of communicating to I/O, a programming terminal

and to other PLCs, the PLC of today is also capable of communicating over a highway to a

Human Machine Interface (HMI). PLCs are also capable of reading I/O from a variety of

sources including I/O through other PLCs. I/O may be distributed using a number of different

configurations. Some I/O may use a proprietary network while other I/O may use a public

network or highway such as Ethernet. Connectivity to intelligent devices has increased through

the years as well with PLCs interfacing to most types of manufacturing equipment such as bar

code readers, weigh scales, servo motors and other intelligent devices.

At one time PLCs were simply known as the PC. With IBM and the introduction of the personal

computer, naming standards had to change. PC was used for the personal computer so PLC

manufacturers changed the name to Programmable Logic Controller. At some time during this

early development of the PLC, Allen-Bradley trademarked the PLC name. The name PLC has

been used by most engineers to describe the product known today as the programmable logic

controller.

Liptak considers the reasons in his book for the popularity of PLCs. They are:

 “Ease of programming and reprogramming in the plant

 A programming language that is based on relay wiring symbols familiar to most plant

electrical personnel

 High reliability and minimal maintenance

 Small physical size

 Ability to communicate with computer systems in the plant

 Moderate to low initial investment cost

 Rugged construction

 Modular design” (from Process Control by Liptak)

The programmable controller of today has grown in capability and shrunk in size from the first

and second generation PLCs of the 1970’s and 1980’s. Where relays, timers, and counters were

the concern of early design, inclusion of numbers and numeric manipulation quickly became part

 Ch 1 Introduction 10

of the PLC. Instructions for comparing, adding, subtracting, multiplying and dividing of

numbers were added to the language. As engineers demanded more sophistication from their

PLC, designers turned to the microprocessor and, in part, emulated the instruction sets of the

popular microprocessors of the day. Shift, Rotate, AND, OR, XOR and other instructions from

the microprocessor were added. Finally added were floating point numbers and more

sophisticated instructions to handle complex algorithms such as the FIFO and LIFO stack

operation and the PID block.

The German manufacturer Siemens first introduced Statement List as its primary language for

the PLC. Statement List or STL was introduced to incorporate the power of the microprocessor.

This was accomplished by implementing a version of assembler language, a more difficult

language to master but one that was more flexible than Ladder. In general, the German Siemens

is considered more powerful but difficult to learn. Implementation, on the other hand, is usually

simpler with the Siemens approach. As the text is used, hopefully these opinions will become

more evident.

Step 7 is the programming language used to program the Siemens PLC. Newly introduced is

Step 7 Basic for the new Siemens 1200. Later, the same language introduced for the 1200 will

be introduced in the 300 and 400 lines of processors. STL will give way to SCL, a Pascal-type

language and the assembler language will be dropped. While different languages will be used

for different applications, Ladder or LAD will suffice for many early applications. Becoming

familiar with LAD and its use will be a primary early concern. Later, use of Function Block and

SCL will provide methods to better describe some applications. Also, the use of grouping of

logic into function blocks will provide a method of encapsulation of logic similar to the

programming language C’s function, structure and class environment.

A look at hardware is important but will not be stressed. The use of language for development of

control of a process will be stressed. Hardware changes with cost and function. Use of hardware

for writing programs is necessary. Study of certain types of hardware instead of the

programming will not be emphasized.

S7 refers to the newer lines of processors from Siemens. There is a S7-200 which is being

phased out with the 1200’s introduction and the S7-300/400 lines. The S7-200 has little in

common with the 300/400 since it was developed by the TI engineers at the time that Siemens

purchased the TI PLC division in the early 1990’s. The earlier S5 processor also is being phased

out. It is an older model, a contemporary to the Allen-Bradley PLC-2 and PLC-5 processor.

From an article on the Omron website:

“S5 is an old model, who was a contemporary of AB-2-PLC and PLC-5. S5 is the Intel 8031

series of microprocessors, which Siemens has licensed the production is based. They also own a

coprocessor, which is used in some models S5 gear single Boolean logic. Siemens pressed

overwhelming number of features from simple 8-bit processor. Punishment for this, however,

that a statement S5 was very primitive and only slightly higher than the 8031 assembler. Look at

the 8031 assembly and S5 Instruction List (IL), and you see the similarities. In contrast, AB has a

different approach and use the mini-computer technology in their designs early PLC. Early

 Ch 1 Introduction 11

PLC2S used 4 processors AMD 2900 bit slice to a separate 16-bit processor. It was expensive in

terms of hardware, but they had fewer restrictions in the software caused.”

The use of PLCs gives one the reason why a language such as LAD is used instead of C for

writing programs for manufacturing applications. It is simply quicker and cheaper to write. It is

interesting to note that the PLC is perhaps changing its name again (from PC to PLC first) to

PAC (Programmable Automation Controller. This new name may never catch on with some but

for the newer embedded control processor of today, it may.

The Allen-Bradley PLC has endured from the beginning. After overtaking Modicon in the early

1980’s, A-B never looked back at competition in the US (except for today’s challenge from

Siemens). The need for a fundamental knowledge of Allen-Bradley programming is required as

well as Siemens. Today, both are required.

The PLC’s Microprocessor Background

PLCs are closely related to computers because of their computational abilities and logic solving

speed. PLCs receive inputs, solve logic, and set the appropriate outputs based on the inputs and

programmed logic. Unlike computers, a program in one part of the PLCs memory cannot lock

out a program in another part of memory. An errant program statement cannot cause all

programs to stop execution, a very important concept if electricians and people other than the

original programmer are to be allowed to change program statements. However, with advances

of instruction sets to include program interrupt instructions, it is not always guaranteed that one

part of a program will not interfere with another and even stop execution of the system.

The PLC can be broken down into these four basic components:

1) Central Processing Unit (CPU)

2) Memory

3) Inputs and Outputs (I/O)

4) Power Supply

 Ch 1 Introduction 12

Power

Supply

(3)

CPU

(1)

Memory

(2)

Inputs

(3)

Outputs

(3)

Programming Device Communications Interface

Analog Inputs

Discrete Inputs

Analog Outputs

Discrete Outputs

 Fig. 1-1 Block Diagram of the PLC

Storage memory provides for variable storage and retrieval. Recipes and other table information

reside here as well as the variables used in logic. Programming more sophisticated applications

such as recipes hint at the using the PLC for more sophisticated applications. A basic rule for

LAD logic has been that it must be maintainable by people other than professional computer

programmers. This includes maintenance personnel who will be used to maintain the system

once installed in a plant. As programs grow in complexity and length, ways have been sought to

again make the logic simpler to implement and trouble-shoot. Although memory is used for a

number of functions, the use of LAD only as a language in the PLC falls short in its ability to

handle complex data storage and math arrays. Also, because of the complexity of larger

programs, a change in one area can affect other areas, causing hardship when changes need to be

made. Language selection is the most important aspect of application development.

Many “religious wars” were waged in the 1990’s involving the choice of the PC or PLC for

automation. Those using the argument that the PLC would be out and that PCs would be found

in all applications, while not discounted, were not considering the unique capabilities that PLCs

had that the PC could not be counted on to deliver. The PLC could be counted on for their

ruggedness and ability to restart even in the most difficult conditions. Distributed I/O was

counted on to read on a consistent basis all the I/O in the system and report to the cpu. What PCs

were capable to deliver was the openness and flexibility and very high performance levels. PLCs

have always lagged their PC cousins in these areas but have not given ground based on their

overall advantages that cannot be discounted such as ruggedness. From the Siemens text

Milestones in Automation (pg 154) by Arnold Zankl, Zankl describes the choice of PC or PLC:

 Ch 1 Introduction 13

“Experts estimate that in 2005 over 90% of all automation solutions were implemented with

programmable controllers. So, contrary to many forecasts, the PC has not replaced the standard

PLC.”

The PC will not displace the PLC but which PLC emerges as the dominant platform or language

is still to be determined.

PLC Hardware and Safety

Inputs are devices such as limit switches, push buttons, photo-eyes, proximity switches, and

relays from other systems. Outputs are devices such as lights, relays, motor starters, solenoids.

Motors and other outputs capable of producing motion must be controlled in such a way that the

machine is run safely. The PLC must control the process safely from the moment the machine is

turned on until the machine is turned off for the day or year. PLC programs must be written in

such a way that all events of the machine are monitored in order to guarantee a safe and orderly

control of the machine.

PLCs were not viewed as being as safe as relays when first developed. Engineers did not trust

the computer as much as the simpler relay. This view changed as PLCs became more reliable.

Interestingly, PLCs were made to resemble rugged equipment so engineers would accept them in

the rugged industrial environment. Today, PLCs are manufactured that easily could fit in the

palm of one's hand. These PLCs have the same error checking and hardware ruggedness as the

big PLC of the 1970's. Ironically, these little PLCs have much more functionally with far

superior instruction sets and faster scan times. They remind one of the evolutions of the

hand-held calculator or the personal computer as the old box has given way to the more powerful

yet less expensive new box.

The design of the functional aspects of the system must include all the electrical and

programming aspects of the system as well as the mechanical, fluid power, air power and

guarding systems.

The safety system runs in tandem with the production system. It must not impede the production

system but run in parallel with it and oversee any hazards. The focus of the two systems is

somewhat different. The production’s system focus is on throughput. The safety system is

focused on protection.

A safe system is not entirely possible and a risk is always present. The purpose of the safety

system is to reduce the risk to acceptable levels. An absolutely safe system is not possible.

 Ch 1 Introduction 14

How PLCs Solve Logic

Programming a PLC requires a program that solves the same basic logic again and again

guarding against the unexpected and keeping the machine running in an acceptable manner.

There must be an orderly flow to the logic to control the machine. PLCs all follow the same

general format utilizing the following four steps:

1) initialize from a safe state - usually off

2) sense inputs

3) solve logic in the program

4) outputs turned on or off to mechanical devices

Steps 2, 3, and 4 are repeated again and again very rapidly to provide the orderly solving of logic

and simulation of relays, timers, and counters. The process, while involving a number of

complex actions, breaks down into the following:

 Initialize Program Sense Inputs Solve Logic Set Outputs

Sense Inputs Solve Logic Set Outputs

Sense Inputs Solve Logic Set Outputs

Sense Inputs Solve Logic Set Outputs

 Fig. 1-2 Solving the PLC Program Scan by Scan

This process repeats each one to 5 millisecond and is referred to as the scan of the PLC. Each

repeated sensing of inputs, solving of logic and setting of outputs is a scan of the PLC.

Siemens describes the cycle time of a processor as the entire time needed to read the inputs,

execute the program one time and process the outputs. Their blocks are divided into networks

and each network is divided into a number of statements. The time line is described as follows:

 Ch 1 Introduction 15

1. Statement

2. Statement

3. Statement

4. Statement

Network 1

Network 2

Process-image Input (PII)
Read and store all input signals

Network n

Last Statement

Process-image Output (PIQ)
Write output signals

Program-

execution-

time

Cycle-

time

Fig. 1-3 Cycle Time of the Siemens PLC

There must also be an easy way to start and stop the PLC and its program from executing. This

is referred to as the modes of stop and run (or program and run). A running PLC program is

analogous to turning on the power to a relay panel. When power is turned on, the machine

responds in an orderly way per the design of the engineer and the wiring of the electrician.

Likewise, when the PLC is turned from program to run, the CPU begins executing the

application based on the rules of the program. These rules form the basis for the operation of the

system. First, outputs are defaulted to an off or pre-defined state. Then, as the inputs are read,

the program is solved sequentially one logic statement at a time. Outputs are turned on or off

based on the program and the input conditions. If a program is written and configured correctly,

the outputs should fail to a safe state. Some outputs may be required to turn on if the processor

fails. Most devices are designed so that if the controller fails, the output turns off and the device

being controlled returns to a safe state. In other words, most but not all outputs turn off when the

program returns to the program or non-running state. For safety's sake, design a system to return

all outputs to the safe state, either on or off, when the program is not actively running a machine.

And when the program is running a machine, devices are programmed to run in only a safe

manner. This is a main concern of the programmer, to design a safe machine as well as a

working machine.

Richard Morley describes in his own way the invention of the PLC through a number of youtube

videos. While they are not the most watched videos on youtube, you may try them sometime. It

is interesting to note that the philosophy of creating the PLC was for simplicity and the use of if-

then statements. Really, all the statements are of this type – if-then.

 Ch 1 Introduction 16

PLCs in World Economy

Manufacturers of PLCs have been many and varied in the past with a stiffening competition over

the last twenty years. The effect has been a thinning of the ranks of PLC vendors. It costs much

more to bring products to market than it did a few years ago. Foreign competition has caught up

and in many ways surpassed domestic PLC manufacturers' technology. A number of buy-outs,

consolidations and joint operating agreements have thinned the number of PLC manufacturers to

a few. Allen-Bradley is the mainstay American company producing PLCs. Also in the US are

General Electric and the combined Modicon-Sq D PLC organization. Siemens in recent years has

made significant inroads in the US market and overtaken all but Allen-Bradley. In Europe, the

dominant PLC manufacturer is Siemens and in the Far East, Japan's Omron and Mitsubishi. The

emerging manufacturing base in China favors Siemens although competition is very strong

between many PLC manufacturers in China as well as in Mexico and Central and South

America.

PLCs vary in size and type in a way similar to other manufactured products. Common to most

manufacturers are the full size, compact, mini, micro and nano versions. Not surprisingly, the

Japanese tend to dominate the mini, micro and nano end of the product while the German and

Americans tend to dominate the larger models. This is changing, however, with a number of

American models getting smaller and smaller as well as the Japanese pushing upward into the

larger models.

Global PLC Markets Share – Historical Trends

Fig. 1-4 Global PLC Market share in 1982/83

A view back to the early 1980’s gives the major PLC vendor as “other” with the largest brand

being Allen-Bradley. They were just ahead of Gould-Modicon who had dominated much of the

 Ch 1 Introduction 17

earlier decade of the PLC market. Third was Siemens followed by Texas Instrument and

IPC/ISSC. Four of the top 5 PLC vendors were from the US and the American PLC vendors

tended to dominate.

By 1993, Siemens had overtaken Allen-Bradley with about 25% of the world market. Allen-

Bradley was still first in the US but the market had globalized. Mitsubishi was third and Omron

fourth. Modicon had been purchased by AEG and was still in fifth place. Texas Instruments

was now part of Siemens as purchases of controls companies by other controls companies

intensified. See Fig. 1-5 below:

Fig. 1-5 Global PLC Market share in 1992/93

Since 1992, Siemens has continued its place as number one and widened its lead somewhat.

Allen-Bradley continues in a strong second place. One company not known for its PLC entry

appeared in the 2007/2008 market survey – ABB. ABB is a very strong controls company in the

world and had been absent from earlier surveys but appears on this analysis although in a small

position overall.

 Ch 1 Introduction 18

Fig. 1-6 Global PLC Market share in 2007/2008

Choice of a PLC must include Siemens as well as Allen-Bradley for the US market. Siemens’

strength can be seen in its attention to detail and its global strategies. One should thoroughly

study the languages found in the Siemens PLCs in order to write logic for the world market.

STL (Statement List) should be learned as well as LAD (Ladder) and FBD (Function Block

Diagram). It is not enough to insist only on LAD with an occasional subroutine written in FBD

or other language.

31%

22%
13%

8%

6%

4%

3%

2%

11%
Siemens

Allen-Bradley

Mitsubishi

Schneider

Omron

B & R

GE/Fanuc

ABB

other

Fig. 1-7 Global

PLC Market

June 2018

 Ch 1 Introduction 19

 A Long Quote from Siemens Milestones Text

From Choosing a PLC from Milestones in Automation by Arnold Zankl – Siemens: (pg 53)

“Programming of the first programmable controllers

To those involved in Europe and the US, it was clear from the start that, to be widely accepted,

programmable controllers would also have to be easily programmable by skilled workers,

electricians, installation engineers, and manual workers – not just by expert programmers. It was

important to meet the target groups on familiar territory with regard to their existing level of

technical know-how.

The plant electrician could, of course, read circuit diagrams. Engineers were somewhat familiar

with Boolean algebra or could easily learn it. And young people who already know how to use

progamming languages could quickly learn how to use menmonic instructions.

These basic programming languages had asserted themselves relatively quickly, and these are

now defined in the global standard IEC 51131.1: Ladder diagram, function block diagram and

statement list resp. instruction list.”

The Siemens text continues on the next page (54) as follows:

“Siemens had at first used STL programming exclusively and been very successful with it. It

seemed reasonable to program something in the way people think of it and describe it verbally.

High education standards in Germany and Europe also supported this approach.

In the USA, where training for skilled workers was generally less intensive than in other

countries, the ladder diagram, derived from the circuit diagram, dominated from the start.”

To study the Siemens PLC in the US, one must recognize a change in attitude that the European

worker has accepted for a much longer time – that programming must be flexible and written in

the language best suited for the application. The American student must follow the rigors of the

STL or SCL and FBD langauges as well as LAD in order to successfully compete in the

marketplace today.

 Ch 1 Introduction 20

IEC 61131-3

IEC 61131-3 was intended to achieve the long-term aim of creating user software largely vendor-

independent and being able to port it to devices of difference to system integrators who want to

use different target systems. The chart below compares Allen-Bradley, Siemens and the IEC

61131-3 international PLC language:

Allen-Bradley RSLogix Siemens Simatic IEC 61131-3

Ladder
Relay Ladder

LAD
Ladder Diagram

LD
Ladder Diagram

Based on circuit
diagram

FBD
Function Block Diagram

FBD
Function Block Diagram

FBD
Function Block Diagram

Based on switching
circuit systems

SFC
Sequential Function
Chart

S7-Graph for
sequencers

SFC
Sequential Function
Chart

For sequential control

 S7-HiGraph State-
transition diagrams

 For asynchronous
processes

 CFC
Continuous Function
Chart

 In the form of
technology oriented
diagrams

 STL
Statement List

IL
Instruction List

Similar to assembler

ST
Structured Text

S7-SCL
Structured Control
Language

ST
Structured Text

Pascal-like high-level
language

 Table 1-3 PLC Languages

(The following article by Jeremy Pollard is re-printed with permission by the author. The article

will explain what IEC 611131-3 is and what the benefits are. While this topic is beyond the

scope of an introductory chapter, this seemed to be the only place to include it.)

IEC 61131-3 by the Numbers

The Programming Standard for Controllers: What It Is, What It Is Not and Its Benefits

By Jeremy Pollard

The International Electrotechnical Commission's (www.IEC.ch) 61131-3 international standard

"Programmable Controllers—Part 3: Programming Languages" was published in 1993 after 15

years in development and first used for PC-based control programming in the 1990s. Typically

programmable logic controllers (PLCs) had their own vendor-developed programming platforms,

but in the past decade, major PLC vendors from Europe and North America initiated and

supported the new standard with their new programming platforms.

http://www.controldesign.com/voices/pollard.html
http://www.iec.ch/

 Ch 1 Introduction 21

The intent of IEC 61131-3 is to normalize PLC and control systems' programming by

standardizing functionality such as program entry, instruction visualization, data types and

syntax. The general requirements section includes models for software, communication—

external as well as internal instruction and variable parameter passing—and programming. The

model functions are as follows:

 The software model introduces the following configuration concepts: resources such as

CPUs; tasks such as executable application software; named variables used for storage;

and communication paths (Figure 1). An IEC-based hardware "client" could run multiple

tasks in one configuration or have multiple configurations.

 The communication model specifies how data is passed to different tasks or

configurations or within the same task. Global variables are introduced.

 The programming model is tied closely with the concept of common elements, which

enable the use of common data types, variable declaration and data formats such as dates

and times. Program organizational units (POUs) also are common elements.

IEC 61131-3 Can Go Beyond

Figure 1: A conventional PLC's software (on the right, in red) consists of one resource, running

one task and controlling one program. However, a controller using IEC 61131-3 (on the left) can

go beyond PLCs by providing a multi-tasking, real-time environment that can be used in a

broader range of applications without requiring users to learn added programming languages. If

vendors allow it, this multi-tasking means a function block-controlled task could run along with

a ladder logic task with data sharing and global variables. At the highest level, the entire software

required to solve a particular control problem is called a Configuration. Within it, one or more

resources can be defined. A resource is like a CPU in the system, and it includes one or more

tasks. These control the execution of different parts of programs, called functions or function

 Ch 1 Introduction 22

blocks, which are the basic building blocks of data structures and algorithms. All of these can

exchange their information via the global or direct variables, even to the outside world via

communication functions such as OPC.

These POUs were developed to reduce the often-implied meanings of instructions and blocks.

There are three types of POUs defined in the standard. The program POU is the program; no

news there. The function-block POU is a program block with inputs and outputs used for tasks

such as timers and counters. The function POU lets various program elements extend the

instruction set of the configuration. The intent of these POUs is to reduce the programmatic

differences between suppliers, so a timer is a timer, regardless of who provides it.

In addition, the standard defines data types, such as Boolean and integer. It also defines the use

and format of derived data types and functions, which must conform to the previously mentioned

standard data types.

Meanwhile, the programming model extends a PLC-type programming environment with three

languages and two graphical representation languages. Ladder logic is most used in discrete

applications and is the most widely coded language in automation today. It is mainly used and

supported by the North American PLC vendors.

Instruction List, which is a rudimentary, assembler-type language has been a European

programming staple for years. The third language is Statement List, which is similar to Pascal.

As a result, the graphical languages are Sequential Function Chart and Function Block. These are

graphical representations of processes and have underlying code written in one of the three

languages or in an alternate language, such as C++.

Finally, the standard defines the abstraction between the IEC model and the PLC/control

hardware by using device tags and not addresses. Similar to programming in a high-level

language such as Visual Basic, it allows the programmer to define a memory point, not by

address, but by using a descriptive name. The standard defines the characters you can use in the

description. The outside world is tied into the model based on the hardware used.

The desired effect of the standard is to reduce the user's learning curve between vendors, and

with work beginning as early as 1978, it was developed to meet that need.

What IEC 61131-3 Is Not

The published IEC 61131 standard encourages extensibility, meaning any company that writes

an IEC 61131-based product can add things to its "standard" product as long as it tells the user

what changes and additions have been made relative to the standard. However, IEC 61131 isn't a

standard. It is a specification for vendors that want to develop a control software programming

environment according to a set of guidelines.

PLCopen (www.plcopen.org), the global association supporting IEC 61131, says you can't have

a standard without certification. However, no one and no company can claim that its ladder logic

http://www.plcopen.org/

 Ch 1 Introduction 23

editor creates compliant code. There's no way to certify it. And yet, one of Rockwell

Automation's web pages for RSLogix 5 makes claims about the "RSLogix family of IEC-1131-

compliant ladder logic programming packages."

In addition, even if it did create compliant code, Rockwell Automation would just need to say

where the extensions are and what effect they have on that compliancy, and then they can claim

compliance.

To make sure I wasn't being overly biased, I enlisted colleagues on the Automation List at

www.Control.com. "The conformance criteria are so general, it is virtually meaningless," says

independent consultant Michael Griffin about compliancy.

Also, a published PLCopen document states, "The overall requirements of IEC 61131-3 are not

easy to fulfill. For that reason, the standard allows partial implementations in various aspects.

This covers the number of supported languages, functions and function blocks. This leaves

freedom at the supplier side, but a user should be well aware of it during his selection process."

This doesn't help us very much.

The original intent of the specification or standard was to create a common platform for control

software development. When the programmable controls industry emerged in the 1970s, all

software was written using dedicated hardware and firmware. With the advent of the personal

computer, vendors developed their own development environments. It is no different today. The

software programs that have been developed support only the vendor's hardware. There is no

common platform here. We are no further along than we were 20 years ago.

For instance, using RSLogix 5000 or Schneider Electric's Unity is no different than when we

used fixed programming terminals. You can't share programs, although PLCopen is trying to

develop an XML transfer specification.

I anticipate that vendors will have import routines, but few, if any, will have export routines.

Likewise, the specification does not cover off-the-scan issues and program-execution methods.

Process behavior most likely will change on different hardware platforms, since the software

environment is different.

Some of the visualizations of the code are supposed to be close. If you look at

ControlLogix5000, which Rockwell Automation states is IEC 61131-compliant, and compare the

visualization with that of KW Software, for example, there won't be much similarity.

Tag-based programming is a plus, but even in the 1980s, many products had the ability to use

symbols. With IEC 61131, you have to use symbols, but the length of the tag names is variable.

You can't use a 40-character symbol with a product that supports only 20.

To me, IEC 61131 is similar to SQL, UNIX or C. They're standard products to some degree, but

they're not called standards. The varying flavors don't interoperate, because, before the world

went Microsoft, some compilers had very different syntax and ways of doing things.

http://www.control.com/

 Ch 1 Introduction 24

In fact, Julien Chouinard, managing director of ICS Triplex–ISaGRAF, calls IEC 61131 a

compromise. However, while I think IEC 61131 has fallen short of expectations, this doesn't

mean there are no benefits to the specification.

Benefits of IEC 61131-3

Now, make no mistake about IEC 61131-3. We're still in the same environment we were in

before its creation. Rockwell Automation, Schneider Electric, Siemens Industry, GEIP and Wago

all have their own programming environments. The business of automation won't allow for real

interoperability of these competing products.

The main difference from 20 years ago is that there is some form of commonality. There are

some good reasons to use an IEC 61131-based product. Tag names permit abstraction of the

hardware I/O, so databases from product to product could be maintained externally. All will use

tag names-based variable allocation and typically the common elements, such as Boolean, will

behave the same. That doesn't mean, however, that all vendors support all the common elements.

Most products will have all five languages. A large benefit of an IEC 61131-integrated

development environment (IDE) is access to the function block part of the software. The power

in function block programming is tremendous. This is the type of programming the older DCS

products had 20 years ago. You can program a very complex part of the application and have it

hidden behind a block. Some argue that this improves troubleshooting capabilities.

In return, it requires a better programming skill, as well as a good handle on the project scope

and project management. This is foreign territory to many ladder programmers.

A selling feature of the standard is the ability to develop control strategies in the right language.

While I agree with this, the plant floor maintenance staff usually doesn't include a structured text

guru. This is scary for the controls engineer who develops the application, so oftentimes he'll just

use ladder logic. Therefore, one of the major benefits of function-block programming is left

untapped as a result.

Proponents of IEC 61131 swear by its training and investment benefits. They say if you use

Company A's IEC 61131, and later you have to use Company B's IEC 61131, then you already

know how to program the hardware. This is not necessarily so, but there is some truth to it.

Many companies use a development package from 3S, some use a product from Softing, and

others create their own. If an OEM used IEC software from four different hardware vendors, and

they all licensed their software from one company, the OEM stands a better chance of being able

to migrate the learning curve to the new hardware and of being able to reuse the software.

Will the training cycle be shorter? Probably. But from vendor to vendor, there is some level of

commonality that can be borrowed, but the impact may be limited.

 Ch 1 Introduction 25

Will IEC 61131 help the maintenance person trying to solve a problem at 3:00 a.m.? For most

user companies that standardize on a single hardware platform, the answer is "no." They'll get

used to whatever the software tool is. IEC 61131 isn't important.

It might be important to you if you leave your company and have IEC 61131 on your resume. It

surely can't hurt.

If you're a machine builder or a manufacturer with multiple vendors that all use IEC 61131,

maybe it helps. There are some inherent similarities that could help getting refamiliarized with a

hardware platform or a software troubleshooting tool, but I think this is a personal function rather

than a software tool function.

No doubt IEC 61131 is here to stay. Early misunderstandings of the benefits, and resulting

misconceptions of what an IEC 61131-based product actually was turned off many potential

users.

Open is as open does. IEC 61131 is the same. It is simply a platform for a software product

design tool for hardware. It provides some benefits or the OEM and the user, but mainly the

vendors benefit, in my perception.

It is no panacea. It can help in our quest for a better automation platform, but we will leave that

for IEC 61499, a true standard. As long as we don't screw it up.

Jeremy Pollard has been writing about technology and software issues for many years. He is

publisher of "The Software User Online," has been involved in control system programming and

training for more than 25 years and was previously North American managing director of

PLCopen (www.plcopen.org), which drafted IEC 61131.

Some Key Features of IEC 61131-3

Structured Software – through use of configuration, resource and function blocks

Strong Data Typing – by using languages that restrict operations so they only apply to a

 appropriate data types

Execution Control – through use of tasks

Complex Sequential Behavior – through sequential function charts

Software Encapsulation – through use of function blocks, structures and complex data types

The standard allows for the creation of programs that are highly structured, yet flexible. It

provides tools for creating programs with complex sequences and promotes the creation of

reusable modules or function blocks.

(end of article by Jeremy Pollard)

http://www.plcopen.org/

 Ch 1 Introduction 26

Other Topics Close to PLC’s

Topics of interest in a PLC text in addition to programming languages should include:

1 Distributed I/O

2 Fabrication of a system including the cabinet, lay-out, drawings

3 Fault tolerant/safe systems

4 RS485 networks including Profibus and DeviceNet, simple

protocols and simple ASCII

5 Use of HMI (Human Machine interface)

6 Ethernet networks, wireless

7 Relation between PLC and CNC and PCS (DCS), robotics

8 Sensors and actuators

9 Batch Systems

10 MES (Manufacturing Execution System) to include

a. Business Modeling Factory

b. Enterprise Asset Management

c. Plant Maintenance Management

d. Dispatch

e. Trace and Tracking

11 ERP(Enterprise Resource Planning) (or how to make it all work

together)

 Table 1-4 Subjects of Interest to the PLC Programmer

While not each topic will be discussed in detail, the purpose of the text is to include as much

about each of these topics as possible.

Some topics that are not included but should be of interest to the control engineer include:

1 Chemistry

2 Fluid Flow (sizing of valves, pumps, pipes)

3 Statics and Dynamics (sizing of servo systems, motors, etc)

4 Local area networks, wide area networks

5 Database development

6 Automatic Control – modeling using statistical methods and dif eq

7 Machine Design

 Table 1-5 Subjects Not Included but of Interest to the PLC Programmer

Each of these areas may be of interest to the student but will not be discussed in detail in this

text.

 Ch 1 Introduction 27

Summary

The emphasis is on programming with LAD and other languages in the most efficient manner to

compete in the world marketplace. While hardware will not be emphasized, its use and inclusion

in any text is necessary.

The following picture is from a Siemens school in Germany in 2008. These are instructors from

around the world for PLCs. I was there but not in the picture.

 Ch 1 Introduction 28

Exercises

1. *A specification by this company was written that created the first PLC. Name the
company and town (or area) in which this occurred:

2. *Name a PLC manufacturer that was absorbed by another PLC manufacturer.

3. *Name a PLC manufacturer that would be found predominantly in a Japanese auto
company’s manufacturing facility.

4. *Name a PLC manufacturer that would be found predominantly in a European factory.

5. *Name a PLC manufacturer that would be found predominantly in a US factory:

6. What is the significance of the picture below to the study of PLCs?

 Ch 1 Introduction 29

ENGINEERING COMMUNITY REMEMBERS PLC INVENTOR DICK MORLEY

Morley, who died in October 2017, was revered as much for his ingenuity as

for his modesty and the encouragement and mentorship he provided other

engineers. REBECCA ZUMOFF — DECEMBER 19, 2017

Dick Morley, who passed away Oct. 17 at 84, was made of engineering legends. He said he created the first

programmable logic controller (PLC) because he had a hangover on New Year’s Day and he needed to save

time. He dropped out of MIT because he didn’t want to learn German. He also quit an engineering job because

they wouldn’t let him ski on weekdays when the lines were short. He rode Harleys, fostered dozens of

children, and had a hand in creating the floppy disk, anti-lock brakes, and automated vehicle control. Morley,

who helped found Modicon and Andover Controls Corp, which are both now part of Schneider Automation

Inc., was also the author of several books and a regular contributor to industry magazines.

Morley was revered as much for his ingenuity as for his modesty and the encouragement and mentorship he

provided other engineers.

“Dick Morley wasn’t just the inventor of modern-day automation-he was also a mentor and a friend to many of

our members and leaders around the world,” said International Society of Automation President Steve

Pflantz in a written statement. “He was a one-of-a-kind person, someone you could never forget. His humor

and wit, along with his incredibly creative way of looking at life, made him a force for good in our industry,

our society, and the world. He will be missed.”

Morley was an angel investor for many young engineers and held annual “Geek Pride Day” festivals at his

barn in New Hampshire, which he had converted to a workshop for engineering innovation. He was never

comfortable being called the inventor of the PLC because he said others played a role in its creation.

“When we first met at a trade show many years ago, I praised Dick, the inventor of the PLC, for being the

reason any integrators have a job at all. ‘Oh, I didn’t invent it,’ I remember him responding. ‘That was just an

idea whose time had come, and I just happened to be the guy working on it,”’ Rick Caldwell, president and

founder of SCADAware wrote in an article after Morley’s passing. Caldwell considered Morley a mentor, and

said he came up with the name SCADAware.

“He never wanted fame, he only wanted to invent new things,” wrote Walt Boyes, editor and publisher of

the Industrial Automation and Process Control INSIDER. “You’d think that the man who invented the floppy

disk, the handheld terminal, zone building HVAC, was the father of the PLC, and created the people mover for

Detroit and Disney World, among the more than 100 patents he held, would be a household name, but Dick

was a surprisingly private individual who didn’t really want or enjoy credit for all that, and the limelight. So

names like Bill Gates and Steve Jobs became famous, while Dick Morley just went on inventing.”

Despite his accomplishments, Morley didn’t die a wealthy man. He spent much of his savings on medical

treatments for his son, who died of aplastic anemia at the age of 32, and for his wife of 56 years, who died in

2012. Friends and fellow engineers started a GoFundMe campaign to help him pay his medical bills a few

years after his wife died. The campaign was also used to purchase him a modest headstone.

In Morley’s honor, the ISA started the Richard E. “Dick” Morley Innovation Scholarship with a $50,000

endowment. The organization also pledged to match the next $50,000 in donations.

“We know that one of the most important parts of Morley’s life was his work with young people,” Pflantz said

in the scholarship announcement. “He was passionate about giving kids a chance to innovate, to redefine their

lives, and to make a difference in the world. We intend to make sure that this scholarship fund continues that

legacy in some small way.”

https://www.processingmagazine.com/author/rebecca-zumoff/
https://www.processingmagazine.com/engineering-community-remembers-plc-inventor-dick-morley/
http://www.sme.org/MEMagazine/Article.aspx?id=30299
http://www.sme.org/MEMagazine/Article.aspx?id=30299
https://www.isa.org/news-and-press-releases/isa-press-releases/2017/november/isa-honors-automation-visionary-and-legend-dick-morley-with-scholarship-fund/
https://www.scadaware.com/blog/memory-dick-morley/
http://www.spitzerandboyes.com/dick-morleys-obituary-from-the-pages-of-the-insider/
https://www.gofundme.com/lv6bho
https://globenewswire.com/news-release/2017/11/07/1176758/0/en/ISA-honors-automation-visionary-and-legend-Dick-Morley-with-scholarship-fund.html

