Name of Faculty- Parveen Kumar

Branch :ElectricalEngineering

Semester : 3rd Semester

Subject: EED

Duration: 13-15 Week

Week	Day	Practical		
	1	Unit 1 : Electrical Symbols used in Electrical installation		
	2	Drawing sheet1: Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches		
	3	Drawing sheet2: Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches		
	4	Unit 2 :DOL starting of 3-phase induction motor		
	5	3-phase induction motor getting supply from selected feeder		
	6	Forwarding/reversing of a 3-phase induction motor		
	7	Two speed control of 3-phase induction motor		
	8	Sequential operating of two motors using time delay relay		
	9	Manually generated star delta starter for 3-phase induction motor		
	10	Automatic star delta starter for 3-phase Induction Motor		
	11	Draw the wiring diagram of battery and inverter connected to residential load.		
	12	Draw the wiring diagram of standalone solar light system with battery for a residential house		
	13	Draw the wiring diagram of solar water heating system.		
	14	Key diagram of 11kV, 33kV		
	15	Key diagram of 66kV sub-stations		
	16	Key diagram of 132 kV sub-stations		
	17	Draw pipe Earthling.		
	18	Draw plate Earthling.		
	19	Bus bar post.		
	20	Kit Kat Fuse.		
	21	Pin type insulator (Pin Type 11kV)		
	22	Pin type insulator (Pin Type 66kV)		
	23	Rotor of a squirrel cage induction motor		
	24	Stator of 3 phase Induction motor (Sectional View)		
	25	Revised Sessional Test -1		
	26	Revised Sessional Test -2		
	27	Revised Sessional Test -3		
	28	Revised Sessional Test -3		

Name of Faculty	:Prankit Gupta
Discipline	:Electrical Engineering
Semester	:111
Subject	:Electrical Machine-I
Lesson Plan Duration	:15 weeks
Work Load	:Lecture-03, Practical-04
(Lecture/Practical) Hours	

		Theory	Practical		
Week	Lecturer Day	Topic(including assignment/test)	Practical Day	Торіс	
	1	Discuss Learning outcomes of Electrical Machine subject.			
1	2	Unit1 DC Generators: Introduction to Electrical Machines: Definition of motor and generator,	1	Measurement of the angular displacement of the rotor of a slip-ring induction motor on application of DC to stator of motor winding in sequence and simultaneously to each	
	3	Torque development due to alignment of two fields and the concept of torque angle,	2	File checking and viva	
	4	Generalized theory of electrical machines.		Speed control of DC shunt	
2	5	DC generator: construction, parts, materials and their functions.	3	method (ii) Field control method	
	6	Principle of operation of DC generator, e.m.f. equation of generator,	4	File checking and viva	
	7	armature reaction, commutation		Study of DC series motor with	
3	8	Various types of DC generator, Applications of DC generators.	5	starter (to operate the motor on no load for a moment)	
	9	9 Unit2 DC Motors: Types of DC motors, Principle of operation,		File checking and viva	
	10	characteristics, Back e.m.f. and its significance, Voltage equation of DC motor.	7	Determine efficiency of DC motor by Swinburne's Test at	
4	11	Torque and Speed; Armature torque, Shaft torque, BHP,		load	
	12	losses, efficiency, Electric Braking. Applications of DC motors.	8	File checking and viva	

5	13	DC motor starters: Necessity, three point and four point starters.		To perform open circuit and short circuit test for determining: (i) equivalent circuit (ii) the regulation and (iii) efficiency of a transformer	
	14	Speed control of DC shunt and series motor: Flux and Armature control.		open circuit and short circuit test at full load	
	15	Determination of losses by Swinburne's test.	10	File checking and viva	
	16	Brushless DC Motor: Construction and working,	1.1	To find the efficiency and regulation of single phase	
6	17	rating and specifications of DC machines	11	transformer by actually loading it.	
	18	First assignment will be given and tentative 1st sessional test/evaluation of sessional marks etc	12	File checking and viva	
	19	Display and analysis of 1st sessional marks		Checking the polarity of the windings of a three phase	
7	20	Unit3 Single Phase Transformers: Introduction, Types of transformers: Shell type and core type;	13	transformer and connecting the windings in various configurations	
	21	Construction: Parts and functions, materials used for different parts;	14	File checking and viva	
	22	Principle of operation,		Finding the voltage and current relationships of primary and secondary of a three phase	
8	23	EMF equation of transformer: Derivation, Voltage transformation ratio.	15	transformer under balanced load in various configurations conditions such as (a) Star-star (b) Star-delta (c) Delta-star (d) Delta - Delta configuring conditions.	
	24	Transformer No-load and on-load phasor diagram.	16	File checking and viva	
9	25	Mutual and leakage fluxes, Leakage reactance. Equivalent circuit of transformer:	17	Evaluation of practicals	
	20	Equivalent resistance and reactance.	10	N/Gere	
	27	voitage regulation and Efficiency.	18	VIVA	
	28	day efficiency.	10	Evaluation of practicals	
	29	Rating and Specifications of single phase transformer.			

10		Unit4 Three Phase Transformers:		
10		Construction of three phase		
		transformers accessories of		
	30	transformers such as Conservator,	20	viva
		breather, Buchholtz Relay, Tap		
		Changer (off load and on load)		
		Second assignment will be given and		
	31	tentative 2nd sessional test/evaluation		
		of sessional marks etc	21	Evaluation of practicals
11		Display and analysis of 2nd sessional		
	32	marks		
		Types of three phase transformer i.e.		
	33	delta-delta, delta-star, star-delta and	22	Viva
		star-star.		
		Need of parallel operation of three		
	34	phase transformer, Conditions for		
		parallel operation. Polarity tests.		
		Criteria for selection of distribution	23	Revision of practicals
12	35	transformer, and power		
		transformer, Amorphous Core type		
		Distribution Transformer.		
		Cooling of transformer. Specifications		
	36	of three-phase distribution	24	Quiz based assesment
		transformers.		
		Unit5: Single phase and three phase		
	37	auto transformers: Construction,		
		working and applications.	25	Devision of our sticula
12		Instrument Transformers:	25	Revision of practicals
13	38	Construction, working and applications		
		transformer and Potential		
		Isolation transformer: Constructional		
	39	Features and applications.	26	Quiz based assesment
		Single phase welding transformer:		
	40	constructional features and		
		applications.		
14		'K' factor of transformers: overheating	27	Revision of practicals
	41	due to non-linear loads and		
		harmonics.		
	42	3rd sessional	28	Quiz based assesment
	42	Evaluation and display of 3rd sessional		
	43	marks	20	viva voce/ preparation of
16	44	Remedial will be taken if any	29	practical sessional marks
21	44	shortcomings found		
	45	Remedial will be taken if any	20	viva voce/ preparation of
	45	shortcomings found	30	practical sessional marks

Name of the Faculty	:	Mr. Narsingh Parmar
Discipline	:	Electrical Engineering
Semester	:	3. Semester
Subject	:	ELECTRICAL ENGINEERING MATERIALS

Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical	
	Lecture	ure Topic (including assignment / test)		Topic
	Day		Day	-
	1	Classification of materials into conducting, Semi conducting		
	2	Insulating materials . Atomic theory, Energy band theory. Classifications		
		of materials on the basis of atomic structure and energy bands.		
		Characteristics of materials.		
	3	of conducting material such as low resistivity and high resistivity materials.		
	4,5	Properties and applications of different low resistivity materials such as		
		silver, Gold, copper (hard drawn, annealed copper), aluminum, steel, ACSR		
		and its alloys like copper alloy (brass, bronze) etc.		
	6,7	Properties and applications of different high resistivity material such as		
		carbon, tungsten, platinum, mercury, lead, and its alloys like Constantan or		
		eureka, Brass phosphor bronze, nichrome, manganin, tin-lead alloy etc.		
	8	Semi-conductors Materials and their Applications,		
	9	Commonly used semiconducting material Germanium and silicon and their		
		properties. Types of Semiconductor etc.		
	10	Characteristics of good Insulating material, Electrical, thermal, chemical,		
		visual, mechanical		
	11	Physical properties of Insulating materials. Types of Insulating materials.		
	10	classification of insulating material on the basis of temperature		
	12	Gaseous Insulating Materials: Properties and applications of air, nitrogen		
	40	and sulphur hexafluoride (SF-6) gases		
	13	Liquid Insulating Materials: Properties and applications of Mineral and		
		Insulating oil for transformers (mineral oil), switchgears etc, synthetic		
	11	Insulating liquid (Pyranol).		
	14	solid insulating Materials: Properties, types and applications of Plastics		
		Bakalita, Malaminas, silicon resins atc		
	15	Natural Insulating materials, proportios and their applications: Mica		
	10	ashestos, ceramic materials (norcelain and steatite)		
	16	Glass Cotton Silk Jute Paper (dry and impregnated) Rubber Bitumen		
	17	Teflon Silicon Grease Insulating variables for coating and impregnation		
		Enamels for winding wires wood etc		
	18	Characteristics and types of magnetic material. Properties of soft magnet		
		material like Iron silicon alloy		
	19,20	Nickel iron alloy, Mu metal, soft ferrites, grain orientation, Cold rolled grain		
		oriented silicon steels (C.R.G.O) etc. and their applications		
	21,22	Properties of hard magnet material like Tungsten steel alloy, chromium		
		steel, cobalt steel, Hard ferrites etc. and their applications.		
	23	Cobalt steel, Hard ferrites etc. and their applications.		

24	Thermocouples, Bimetals, soldering, fuse, materials and their applications	
25	in fabrications of electrical machines such as motors	
26	ors, transformers etc	
27	Class Test	
28,29	Problems, Doubts & their solution	
30	Revision of important topics	

Name of the Faculty	:	Mr. Narsingh Parmar
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	Analog and Digital Electronics
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment /	Practical	Торіс	
	Day	test)	Day		
	1,2	Concept of insulators, conductors and semiconductors	1	To Plot V-I characteristics of a PN junction diode, To Plot V-I characteristics of a Zener diode, Observe the output of waveform:	
	3,4	Intrinsic and extrinsic semiconductor	2	Half-wave rectifier circuit using one diode, Full-wave rectifier circuit using two diodes	
	5,6	P and N type semiconductor and their conductivity	3	Observe the output of waveform of Bridge-rectifier circuit using four diodes.	
	7, 8	Effect of temperature on conductivity of intrinsic semiconductor	4	Plotting of input and output characteristics and calculation of parameters of transistors in CE configuration., Plotting of input and output characteristics and calculation of parameters of transistors in CB configuration	
	9,10	PN junction diode, mechanism of current flow in PN junction	5	To study weighing machine using load cell	
	11,12	Forward and reverse biased PN junction, potential barrier	6	Plotting of V-I characteristics of a FET	
	13	Drift and diffusion currents, depletion layer	7	Basic logic operations of AND, OR, NOT gates	
	14, 15	V-I characteristics of diodes	8	Verification of truth tables for NAND, NOR and Exclusive OR (EX-OR) and Exclusive NOR (EX-NOR) gates	
	16, 17	Diode as half-wave, full wave and bridge rectifiers, Peak Inverse Voltage, rectification efficiencies and ripple factor calculations	9	Realization of logic functions with the help of NAND or NOR gates.	
	18, 19, 18	Concept of filters,	10	To design a half adder using XOR and NAND gates and	

			verification of its operations.
20	Types of diodes, characteristics	11	Construction of a full adder
	and applications of Zener diodes		circuit using XOR and NAND
		10	gates and verify its operation
21	Concept of a bipolar transistor,	12	Verification of truth table for
	PNP and NPN transistors, CB, CE,		IC flip-flops (At least one IC
	CC configurations of a transistor		each of Diatch, Difip-flop, JK
22.23	Transistor as an amplifier in CE	12	Morification of truth table for
22, 23,	Configuration Current	15	encoder and decoder ICs
	amplification factors Comparison		Verification of truth table for
	of CB. CE and CC Configurations		Mux and De-Mux
25.26	Construction, operation and		
,	characteristics of FETs. FET as an		
	Amplifier		
27, 28	Construction, operation and		
	characteristics of a MOSFET,		
	Comparison of JFET, MOSFET and		
	BJT		
29, 30	Distinction between analog and		
	digital signal. Decimal, Binary,		
	octal and hexadecimal number		
24 22	System		
31, 3∠, 33	boxedosimal to binary and viso		
55	Nexadecimal to binary and vice-		
	subtraction		
34 35	Sequential Circuits such as Half		
	adder, Full adder		
36	Mux, De-Mux, Encoder and		
	Decoder		
37, 38	Combinational Circuits like Latch,		
	Flip Flops, shift registers and		
	Counters		
39, 40	A/D and D/A Converters and its		
	Applications		
41	Revision of important topics		

Name of the Faculty	:	Mr. Ashish Kumar Yadav
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	ELECTRICAL MEASUREMENT & INSTRUMENTATION
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical	
	Lecture	Topic (including assignment /	Practical	Торіс
	Day	test)	Day	
	1	Significance of measurement, errors in measurement, types of error	1	Use of analog and digital multimeter for measurement of voltage, current (A.C/D.C) and resistance
	2	Classification of measuring instruments: indicating, recording, and integrating instruments; Essential requirements of an indicating instruments	2	Use of LCR meter for measuring inductance, capacitance and resistance.
	3, 4	Concept of Ammeter, voltmeter, ammeter construction, working principle	3	To measure power, power factor in a single-phase circuit, using wattmeter and power factor meter and to verify results with calculations.
	5	Merits, demerits and comparison of moving coil, moving iron meter, rectifier type	4	Measurement of power and power factor of a three- phase balanced load by two wattmeter method.
	6,7	Extension of range and calibration of voltmeter and ammeter, Errors and compensation	5	Measurement of voltage and frequency of a sinusoidal signal using CRO and draw wave shape of signal.
	8	Construction, working principle, merits and demerits of dynamometer wattmeter	6	Measurement of pressure by using LVDT
	9, 10	Digital wattmeter, Active and reactive power measurement by , two and three wattmeter method.	7	Measurement of temperature by using Thermistor/Thermal Imager.
	11, 12	Effect of Power factor on wattmeter reading in two wattmeter method, Maximum Demand indicator	8	To record all electrical quantities from the meters installed in the institution premises
	13, 14, 15	Construction, working principle, merits and demerits of single- phase and three-phase energy meters (Induction type), Errors	9	To measure Energy at different Loads using Single Phase Digital Energy meter.

-			1	
		and their compensations		
	16	Calibration of energy meter using	10	Calibration of single phase
		direct loading		and three-phase energy
				meter.
	17	Digital energy meter (diagram,		
		construction and application)		
	18, 19,	Construction, working principle		
	20	and application of Meggar, Earth		
		tester (analog and digital), multi-		
		meter (analog and digital),		
		Frequency meter (dynamometer		
		type), single power factor meter		
		(Electrodynamometer type)		
	21, 22	Working principle of		
		synchroscope and phase		
		sequence indicator, tong tester		
		(Clamp-on meter)		
	23	Study of LCR meters and their		
	0.4	applications		
	24	Construction, working and		
	05.00	applications of CI and PI		
	25, 20	Cathode Ray Oscilloscope: Block		
		diagram, working principle of CRU		
	27	Digital Stars as Oscillassana		
	21	Digital Storage Oscilloscope		
		(DSO), Introduction, Types of		
	28 20	Construction and principle of		
	20, 23			
		Potentiometer-variac and strain		
		gauges -No derivation		
	30 31	Only definition and formula for		
		gauge factor. Types of strain		
		gauges like unbonded, bonded		
		and semiconductor		
	32, 33	Construction and principle of		
	,	Inductive transducers-L.V.D.T. and		
		R.V.D.T, their applications.		
	34.35	Construction, principle and		
		applications of transducers –		
		Piezoelectric transducer, photo-		
		conductive cells, photo voltaic		
		cells.		
	36, 37,	Temperature measurement -		
	38	Construction and Working of RTD,		
		Thermistor and Thermocouple,		
		radiation pyrometer, technical		
		specifications and ranges.		
		Thermal Imager Camera		
		(Concept)		
	39, 40	Pressure measurement –		

	Construction and working of bourdon tube, bellow diaphragm strain gauge. Measurement of pH Level.	
41	Revision of important topics	