Lesson Plan

: Deepak

Name of the faculty

Discipline		: Civil Engg.						
Semeste	er	: 3 rd Semester						
Subject		: Structural Mechanics						
	Plan Dur	` ⊥						
-		ture) per week (in hours): Lectures-						
Week	Lecture	Theory	Practical	Practical				
	Day	Topic (Including assignment/test)	Day	Торіс				
	1 st	Classification of materials, elastic materials, plastic materials, ductile materials, brittle materials	1^{st}	Determination of yield stress, ultimate stress, percentage elongation				
1 st		Introduction to tensile test, compressive test, impact test, fatigue test, torsion test on metals.	2^{nd}	do				
	2 nd	Concept of stress, normal and shear stresses, Concept of strain and deformation, longitudinal and transverse strain, Numerical Problems on stress and strain.	3 rd	do				
			4^{th}	do				
	314	Poisson's ratio, volumetric strain, Hooke's law, moduli of elasticity and rigidity, Bulk modulus of elasticity, relationship between the	5 th	do				
2 nd		elastic constants. Stresses and strains in bar subjected to tension and compression. Extension of uniform bar under its own weight, stress produced in compound bars due to axial load.	6 th	do				
	4^{th}	Stress-strain diagram for mild steel and HYSD steel, mechanical	7 th	do				
		properties, Numerical problems	8^{th}	do				
3 rd	5 th	factor of safety. Temperature stresses and strains Concept of a beam and supports (Hinges, Roller and Fixed	9 th	Plot the stress strain diagram and compute the value of young's modulus on mild steel				
			10^{th}	do				
	6 th	types of beams: simply supported, cantilever, propped, over hang, cantilever and continuous beams Revision	11 th	do				
4 th	7 th	Types of loads (dead load, live load, snow load, wind load seismic	13 th	do				

		load as non IC Codes ate) and types	14 ^m	de .
		load as per IS Codes etc) and types	17	do
		of loading (point, uniformly		
		distributed and uniformly varying loads)		
	Oth	Concept of bending moment and	15 th	do
	8 th	shear force, sign conventions	$\frac{15}{16^{\text{th}}}$	do
		Numerical problems	10	
5 th	9 th	Bending Moment and shear force	17 th	Testing of HYSD Steel
	-	diagrams for cantilever	17	
		Bending Moment and shear force	18 ^m	do
		diagrams for simply supported		
		subjected to concentrated, uniformly distributed load.		
		Bending Moment and shear force	19 th	do
	10 th	diagrams for overhanging beams	19	
		subjected to concentrated	20^{th}	do
		Numerical problems		
6 th	11th	Relationship between load, shear	21 st	do
0	1101	force and bending moment.		
		Sessional – 1st	22^{nd}	do
	12 ^m	Problems on above topic	23^{rd}	do
		Revision	24^{th}	do
7 th		point of maximum bending	25 th	Determination of Young's
/	13 th	moment, and point of contraflexure	23	modulus of elasticity for
		Concept of moment of inertia and		steel wire with Searl's
		second moment of area and radius of		apparatus
		gyration,	26 th	do
	14 th	theorems of parallel and perpendicular	27 "	do
		axis Revision	28^{th}	do
8th	15 th	second moment of area of common	29 th	do
oth	15	geometrical sections: rectangle	_>	uo
		second moment of area of common	30 th	do
		geometrical sections: triangle,	50	
		circle		
	16 th	Second moment of area for L, T	31 st	do
	10	Numerical problems	32 nd	do
9 th	17 th	Second moment of area for I	33 rd	Determination of modulus of
-	1/"	sections, section modulus.		rupture of a concrete beam
		Concept of pure/simple bending	34 ^{ui}	do
		Assumptions made in the theory of	35 th	do
	18^{th}	simple bending	55	
		Revision	0.64	do
10 th	4.5.1	derivation and application of	<u>36th</u> 37 th	do
10	19 th	bending equation to circular cross-		d0
		section		
		2 nd Sessional	38 th	do
			50	
	20th	Assignment, Tutorial	39 th	do
			~ /	

			40^{th}	-do
11 th	21 st	Problem solving, derivation and application of bending equation to I section	41 th	Determination of maximum deflection and young's modulus of elasticity in simply supported beam with load at middle thirdpoint
	22 ^{na}		42 th	do
		derivation and application of bending equation to T&L sections	43 th	do
		Problem solving lecture	44^{th}	do
12 th	23 ^{ru}	Moment of resistance	45 th	do
		Calculations of bending stresses in simply supported beam Concept of shear stresses in beams,	46 th	do
	24 th	shear stress (introduction	47 th	do
		only), Problem solving	48^{th}	do
13 th	25 th	Determination of slope and deflection using Moment Area Theorem for simply supported beam for pointed load and U.D. L	49 ^m 50 ^m	Verification of forces in a framed structure do
	26 th	Numerical problems	51 th	do
14 th	27 th	Theory of columns Problem solving using Eulers and	52 th 53 rd	do do
		Rankine Formula Concept of a perfect, redundant and deficient frames	54	do
	28 th	Assumptions and analysis of trusses by: Method of joints Revision	55 th 56 th	do
15 th	29 th	Assumptions and analysis of trusses	57 th	Problems on above topic
	29	by:Method of sections Numerical problems	58 ^m	do
	30 th	3 rd Sessional	59 th	do
	20	Revision of all sessional exams	60^{th}	do

Lesson plan

Name of Faculty	Sahil Bangar
Discipline	Civil Engineering
Semester	3 rd semester
Subject	Concrete Technology
Lesson Plan Duration	15 weeks (from Sept 2023 - Dec 2023)
Work load [Theory + Practical] Per Week	[02+02]

Week	Day	Theory Topic/ Assignment/ Test	No.	Practical	
1st	1	1. Introduction to Concrete 1.1 Definition of concrete, properties of concrete	1	To determine the physical properties of cement such as fineness, consistency, setting time,	
-	2	Advantages and disadvantages of concrete		soundness, and compressive strength of cement as per IS Codes	
	1	2. Ingredients of Concrete 2.1 Cement: Introduction		To determine the physical properties of cement such as	
2nd	2	2.2 Aggregates: 2.2.1 Classification of aggregates according to size and shape		fineness, consistency, setting time, soundness, and compressive strength of cement as per IS Codes	
3rd	1	2.2.2 Characteristics of aggregates: Particle size and shape, surface texture, specific gravity of aggregate; bulk density, water absorption, surface moisture, bulking of sand, deleterious materials soundness		To determine flakiness and elongation Index of coarse aggregate.	
	2	2.2.3 Grading of aggregates aggregates: coarse aggregate, fine aggregate; All- in-aggregate; fineness modulus; interpretation of grading charts	•		
4 th	1	2.3 Water: Water Quality requirements as per IS: 456-2000		To determine silt content in fine	
т	2	Revision / Class Test	4	aggregate.	
5th -	1	3. Water Cement Ratio 3.1 Hydration of cement principle of water-cement ratio,	- 5	Determination of specific gravity	
	2	2 Duff Abram's Water-cement ratio law: 2 Limitations of water-cement ratio law and its effects on strength of concrete		and water absorption of aggregates.	

	1	4. Properties of Concrete 4.1 Properties in the plastic state: Workability, Segregation, Bleeding and			
6 th	2	Harshness 4.1.1 Factors affecting workability, Measurement of workability: slump test, compacting factor; Recommended slumps for placement in various	6	Determination of bulk density and voids of aggregates.	
7th	1	conditions as per IS: 456-2000/SP-234.2 Properties in the hardened state: Strength, Durability, Impermeability, Dimensional changes	7	Determination of particle size distribution of fine, coarse and all-	
,	2	4.3 Concrete mix design (Introduction only)		in aggregate by sieve analysis (grading of aggregate).	
8th	1	4.4 Introduction to Admixtures (chemicals and minerals) for improving performance of concrete	8	To determine the bulking of fine aggregates.	
	2	Revision/ Class Test			
Qth	1	 5. Concreting Operations 5.1 Storing of Cement: 5.1.1 Storing of cement in a warehouse 5.1.2 Storing of cement at site 	9	To determine workability by slump test and to verify the effect of water, fine aggregate/coarse	
,	2	5.1.3 Effect of storage on the strength of cement5.1.4 Determination of warehouse capacity for storage of Cement	9	aggregate ratio and aggregate/Cement ratio on slump.	
Loth	1	5.2 Storing of Aggregate: Storing of aggregate at site5.3 Batching (to be shown during site visit5.3.1 Batching of Cement	10	To determine workability by slump test and to verify the effect	
10 th	2	 5.3.2 Batching of aggregate by: □ Volume, using gauge box (farma) selection of proper gauge box □ Weight spring balances and batching 	- 10	of water, fine aggregate/coarse aggregate ratio and aggregate/Cement ratio on slump.	
		machines			
11 th	1	 5.3.3 Measurement of water 5.4 Mixing: 5.4.1 Hand mixing 5.4.2 Machine mixing - types of mixers, capacities of mixers, choosing the appropriate size of mixers, operation of mixers. 5.4.3 Maintenance and care of mixers 	11	Compaction factor test for workability.	
	2	6.1 Transportation of concrete: Transportation of concrete using wheelbarrows, transit mixers, chutes, belt conveyors, pumps, tower cranes, hoists, etc.			

		6.2 Placement of concrete: Checking of formwork, shuttering, and precautions to be taken during placement6.3.3 Selection of suitable vibrators for different situations			
12 th	1	 6.4 Finishing concrete slabs - screeding, floating and trowelling 6.5 Curing: 6.5.1 Objective of curing, methods of curing like ponding, membrane curing, steam curing, chemical curing 6.5.2 Duration for curing and removal of formwork 	12	Non-destructive test on concrete by:	
	2	 6.6 Jointing: Location of construction joints, treatment of construction joints, expansion joints in buildings - their importance and location 6.7 Defects in concrete: Identification of defects and methods of removing defects. 		a) Rebound Hammer Test	
	1	Revision / Class Test			
13 th	2	 7. Special Concretes (only features) 7.1 Concreting under special conditions, difficulties, and precautions before, during and after concreting 7.1.1 Cold weather concreting 7.1.2 Under water concreting 7.1.3 Hot weather concreting 	13	Non-destructive test on concrete by: b) Ultrasonic Pulse Velocity Test	
	1	7.2 Ready mix concrete7.3 Fly ash concrete		To determine the compressive	
14 th	2	 8. Importance and methods of non- destructive tests (introduction only) 8.1. Rebound Hammer Test 8.2. Pulse Velocity method 	14	To determine the compressive strength of concrete cubes for different grades of concrete	
15 th	1	Revision / Class Test	15	To determine the flexural strength	
15	2	Revision / Class Test	15	of the concrete beam.	

Nome of I	Foorltr	Lesson plan	C	resh Kumar		
Name of I	•					
Discipline				Civil Engineering 3 rd		
Semester			-			
Subject				id mechanics		
Lesson Pl	an Dura	tion	15 202	Weeks (From Sept 2023 to Dec 23		
Work loa	d [Theo	ry + Practical] Per Week		+04]		
Week	Day	Theory Topic/ Assignment/ Test	No.	Practical		
	1	Properties of Fluids : Introduction: Fluid	1			
		Mechanics, Hydrostatics, Hydrodynamics,				
1^{st}		Hydraulics, Density or Mass Density, Specific				
		Weight or Weight Density, Specific Volume,				
		Specific Gravity, Viscosity: Units of viscosity,				
		Kinematic Viscosity, Newton's Law of viscosity,				
		Variation				
		Of viscosity with temperature.				
	2	Types of Fluids: Ideal, Real, Newtonian, Non-	2			
	2	Newtonian and ideal Plastic fluids.	2	-		
		Compressibility, Bulk Modulus, Surface Tension,				
		Capillarity, Vapour Pressure and				
		Cavitation				
	1	Revision and copy check	3	To verify Bernoulli's Theorem		
2 nd	2	Pressure and its Measurement : Pascal's Law,	4	Revision		
	2		4	Revision		
		Fluid pressure at a point and Pressure variation in a fluid at rest.				
		Types of Pressure: Absolute Pressure, Gauge				
		Pressure, Vacuum Pressure and Atmospheric				
	1	Pressure	-			
	1	Measurement of Pressure: Simple and	5	To find out venturimeter		
		Differential Manometer (with Numerical		coefficient		
3 rd		Problems)				
	2	Hydrostatic Force on Surfaces: Total pressure	6	Revision		
		and centre of pressure on vertical and inclined				
		plane				
	1	Sessional Test	7	Revision		
4^{th}						
	2	Assignment 1	8	Revision		
	1	Buoyancy and Floatation: Buoyancy and	9	To determine coefficient of		
5 th	1	Centre of Buoyancy, Meta-centre and Meta-	-	velocity (C_v), Coefficient of		

		centric Height, Analytic Method for Meta-centric Height (Concept only – Simple Numerical Problems),		discharge (C_d) Coefficient of contraction (C_c) of an orifice and verify the relation between them
	2	Conditions of equilibrium of a floating and sub- merged bodies (Concept only)	10	Revision
6 th	1	Flow of Fluids: Types of Flow: Steady and Unsteady Flow, Uniform and Non-Uniform Flow, Laminar and Turbulent Flow, Compressible and Incompressible Flow	11	Revision
	2	Revision and copy check	12	Revision
7^{th}	1	Discharge and Continuity Equation (No derivation - Simple Numerical Problems)	13	To perform Reynolds's experiment
,	2	Types of hydraulic energy: Potential energy, kinetic energy, pressure energy, Bernoulli's Theorem: Statement and Description (without Proof of Theorem – Simple Numerical Problems)	14	Revision
8 th	1	FlowMeasurements:VenturimeterandOrificemeter(without Proof), Pitot-tubeandCurrentmeter, Orifices, HydraulicCo-Efficient(Cv, Cc and Cd) and their relationship	15	Revision
	2	Discharge over a Rectangular and Trapezoidal Notch (No Derivation), Discharge over a Rectangular and Trapezoidal Weir (No Derivation)	16	Revision
9 th	1	Flow Through Pipes: Reynold's number, laminar and turbulent flow - explained through Reynold's experiment,	17	To verify loss of head in pipe flow due to a. Sudden enlargement b. Sudden contraction c. Sudden bend
	2	Revision and copy check	18	Revision
10 th	1	Loss of Energy in Pipes	19	To verify loss of head in pipe flow due to a. Sudden enlargement b. Sudden contraction c. Sudden bend
	2	Sessional Test Assignment	20	Revision
11 th	1	Major and Minor Energy Losses (No derivation of formula)	21	Revision

	2	Loss of Energy in Pipes: Simple Numerical Problems	22	Revision
12 th	1	Hydraulic gradient line and total energy line, Pipes in series and parallel: Simple Numerical Problems	23	Revision
	2	Dimensional Homogeneity: Secondary and Derived Quantities, Dimensional Homogeneity	24	Revision
13th	1	Revision and copy check	25	Revision
	2	Dimensional Numbers: Reynold's Number, Froude's Number, Euler's Number, Weber's Number, Mach's Number (Only concept)	26	Revision
14 th	1	Flow in Open Channel: Definition and classification of flow in open channels, Discharge through open channel by Chezy's formula	27	To determine coefficient of discharge of a rectangular notch and triangular notch.
	2	Most economical channel sections (no derivation, only simple numerical problems) ii) Trapezoidal	28	Revision
15 th	1	Hydraulic Pumps: Reciprocating Pump,Centrifugal Pump, Differences betweenReciprocating Pump and CentrifugalPump (No Derivations and Numerical)	29	Revision
	2	Test Sessional	30	Revision

Lesson Plan

Name of Faculty : Sunita Discipline : Civil Engg. Semester : 3rd Semester. Subject : Building Construction Lesson Plan Duration : 15 Weeks (From Sep.2023 to Dec. 2023)

Week	Day	Theory	Practical
1 st	1 st	UNIT I 1. Foundation 1.1 Introduction: Definition of a building, Different parts of a building, classification of buildings	1. Demonstration of tools and plants used in building construction G1
	2 nd	1.2 Types of foundation – Shallow foundation (thumb rules for depth and width of foundation) and Deep foundation	1. Demonstration of tools and plants used in building construction G2
2 nd	1 st	1.3 Excavation of foundation – Trenches, Shoring, Underpinning, Timbering and De- watering	2. To prepare Layout of a building: 2BHK with front veranda G1
	2 nd	2. Walls 2.1 Classification of walls based on load - Load bearing, non-load bearing, retaining walls	2. To prepare Layout of a building: 2BHK with front veranda G2
3 rd	1 st	 2.2 Classification of walls as per materials of construction 2.3 Partition walls: Constructional details, suitability and uses of brick and wooden partition walls 	3. To construct brick bonds (English Bond) in One, One & half and Two brick thick: (a) Walls for L, T and Cross Junction (b) Columns G1
	2 nd	2.4 Scaffolding, construction details and suitability of mason's brick layers and tubular scaffolding.	3. To construct brick bonds (English Bond) in One, One & half and Two brick thick:

			 (a) Walls for L, T and Cross Junction (b) Columns G2
4 th	1 st	UNIT II 3. Masonry 3.1 Glossary of terms used in brick masonry - Header, Stretcher, Queen closer, King closer etc.	 4. To construct brick bonds (Flemish Bond) in One, One & half and Two brick thick: (a) Walls for L, T and Cross Junction (b) Columns G1
	2 nd	 3.2 Brick Masonry Bonds – English and Flemish Bonds 3.3 Construction of brick walls – New wall Construction 	 4. To construct brick bonds (Flemish Bond) in One, One & half and Two brick thick: (a) Walls for L, T and Cross Junction (b) Columns G2
5 th	1 st	 , Methods of bonding new brick work with old (Toothing and Raking Methods) 3.4 Mortars: types, selection of mortar and its preparation 	5. Demonstration of "Timbering of Excavated Trenching" through a model and visit at construction site G1
	2 nd	1 ST Sessional Test	5. Demonstration of "Timbering of Excavated Trenching" through a model and visit at construction site G2
6 th	1 st	 4. Arches and Lintels 4.1 Glossary of terms used in arches - Intrados, Extrados, Crown, Key stone etc. 4.2 Types of Arches – Semi-circular, Segmental and Parabolic arches 	6. Demonstration of "Laying Damp Proof Courses" through a model and visit at construction site G1
	2 nd	4.3 Lintels – Cast-in-situ and pre-cast lintels	6. Demonstration of "Laying Damp Proof Courses" through a model and visit at construction site G2

7 th	1 st	5 Doors and Windows 5.1 Glossary of terms used – Door Frame, Door Shutter, Hold fast, Horns, Jamb, Reveal, Soffit, Styles, Rails: Top, Bottom and Lock rails etc.	7. Demonstration of "Construction of Masonry Walls" through a model and visit at construction site G1
	2 nd	5.2 Doors and window frames – Materials and Sections, Fixtures and Fasteners	7. Demonstration of "Construction of Masonry Walls" through a model and visit at construction site G2
8 th	1 st	5.3 Doors – Framed and Panelled door, Glazed or sash door, Flush door, Sliding door, Rolling steel shutter doors	8. Demonstration of "Brick Layers Scaffolding" through a model and visit at construction site
	2 nd	5.4 Windows – Fixed window, Sliding window, Glazed or sash window, Corner window 5.5 Ventilators	G1 8. Demonstration of "Brick Layers Scaffolding" through a model and visit at construction site
9 th	1 st	 6. Damp Proofing and Water Proofing 6.1 Dampness and its ill effects in buildings 6.2 Sources of dampness in building 	G2 9. Demonstration of "Steel Scaffolding" through a model and visit at construction site G1
	2 nd	6.3 Damp proofing of basement, Plinth and walls, Kitchen, Washroom, Roof	9. Demonstration of "Steel Scaffolding" through a model and visit at construction site G2
10 TH	1 st	UNIT IV 7. Floors 7.1 Glossary of terms used – Floor finish, Topping, Under layer, Base course, Rubble filling and their purpose	10. Demonstration of "Laying of Vitrified Tile Flooring" through visit at construction site G1
	2 nd	Revision ,2 nd sessional test	10. Demonstration of "Laying of Vitrified Tile Flooring" through visit at construction site
11 TH	1 st	7.2 Types of floor finishes – Concrete flooring, Ceramic tile flooring, Stone	G2 11. Demonstration of "Plastering and Pointing

	2 nd	10. Surface Finishes	14. Demonstration of
14 TH	1 st	 9.3 Various types of layout – Straight flight, Dog legged, Quarter turn, Half turn 9.4 Ramps and Elevators – Excavation and construction 9.5 Escalators pits and landings – Excavation and construction 	14. Demonstration of"False Ceiling" throughvisit at construction siteG1
	2 nd	UNIT V 9. Stairs 9.1 Glossary of terms used in stairs: Landing, Stringer, Newel, Baluster, Riser, Tread, Width of staircase, Hand-rail, Nosing 9.2 Types of stairs on the basis of materials used: RCC and Steel stairs	13. Demonstration of "Pre-construction and post construction termite treatment of building and woodwork" through visit at construction site G2
13 th	1 st	8.3 False ceilings – Gypsum false ceiling, POP false Ceiling, PVC false ceiling, Wooden false ceiling, Cellotex false ceiling	13. Demonstration of "Pre-construction and post construction termite treatment of building and woodwork" through visit at construction site G1
	2 nd	 8.2 Glossary of terms for pitched roofs Batten, Eaves, Facia board, Gable, Hip, Lap, Purlin, Rafter, Rag bolt, Ridge, Rain water gutter, Anchoring bolts 	12. Demonstration of "Constructing RCC work – Foundations, Columns, Beams and Slabs" through visit at construction site G2
12 TH	1 st	8. Roofs 8.1 Types of roofs, concept of flat and pitched roofs	12. Demonstration of "Constructing RCC work – Foundations, Columns, Beams and Slabs" through visit at construction site G1
	2 nd	7.3 Special emphasis on level / slope / reverse slope in bathrooms, toilets, kitchen, balcony	11. Demonstration of "Plastering and Pointing Exercise" through visit at construction site G2
		(marble and kota) flooring, Wooden flooring	Exercise" through visit at construction site G1

		 10.1 Plastering – Plain plaster, Stone cladding and Tile work 10.2 Pointing – Different types of pointing and their methods 	"False Ceiling" through visit at construction site G2
15 TH	1 st	10.3 Painting – Preparation of surface, Primer coat and application of paints on wooden, steel and plastered wall surfaces 10.4 Selection of appropriate paints/finishes for interior and exterior surfaces	15. Demonstration of "Interlocking Tiles" through visit at construction site G1
	2 nd	Revision, 3 rd sessional	15. Demonstration of"Interlocking Tiles"through visit atconstruction siteG2

		Lesson plan					
Name of Faculty				Gaurav			
Discipline				Civil Engineering			
Semester				3rd			
Subject			Sur	veying-1			
Lesson Pl	lan Durati	on	15	weeks (from Sept 2023 to Dec 2023)			
Work loa	d [Theory	v + Practical] Per Week	[02	+06]			
Week	Day	Theory Topic/ Assignment/ Test	No.	Practical			
	1	Introduction and Basic Concepts	1	Compass Surveying a) Study of			
		Definition and Purpose of Surveying, Primary		prismatic compass			
1st		Division of Surveying, Basic principles of					
		surveying, Measurements-linear and angular					
	2	Units of measurements, Instruments used for taking					
		these measurements, Classification of surveying,					
		Scales: Engineering Scale, Representative Fraction					
	1	(RF) and diagonal scale	2	b) Sotting the compass and taking			
	1	Chain and Compass Surveying Purpose and principles of chain surveying,	L	b) Setting the compass and taking observations			
		Operations in Chain Surveying (Ranging,					
2 ⁿ		Measurement, Offsetting)					
d	2	Purpose of compass surveying, Use of prismatic					
		compass: Setting and taking observations					
	1	Concept of following with simple numerical	3	c) Measuring angles between the			
		problems:		lines meeting at a point			
3rd		a) Meridian - Magnetic and true, Arbitrary					
514		b) Bearing - Magnetic, True and Arbitrary					
	2	c) Whole circle bearing and reduced bearing					
	1	d) Fore and back bearing	4	Levelling i) a) Study of Auto			
4th		a) I ole una cuen ceuring		level and levelling staff b)			
	2	e) Magnetic dip and declination		Temporary adjustments of			
		Assignment		Auto levels			
	1	Local attraction – Problems, causes, detection,	5	c) Taking staff			
5th		errors and corrections		readings on different			
	2	-do-		stations from the			
		Revision		single setting and			
				finding differences of			
				level between them ii)			
				To find out difference			
				of level between two			
				distant points by			
				shifting the instrument			
	1	Levelling	6	iii) Longitudinal and cross			
		Definition and Purpose of levelling					

6 th	2	Various technical terms used in levelling (level surface, horizontal surface, vertical surface, datum, reduced level, bench marks, line of collimation, axis of the bubble tube, axis of the telescope and vertical axis)		sectioning of a road/railway/canal iv) Setting a gradient by auto-level.
7th	1	Identification of various parts of Auto level, leveling staff types, uses and least count of leveling staff	7	III. Plane Table Surveying i) a) Study of the plane
	2	Temporary adjustment and permanent adjustment of Auto level		table survey equipment b) Setting the plane table c) Marking the North direction d) Plotting a few points by radiation method
8th	1	Concept of back sight, foresight, intermediate sight, change point, to determine reduce levels Level book and reduction of levels by a] Height of collimation method	8	 ii) a) Orientation by - Trough compass - Back sighting b) Plotting few points by intersection, radiation and resection method

	1	b] Rise and fall method (Numerical problems)	9	iii)
oth	2	Methods of Leveling (Simple levelling, differential		Traversi
		levelling, fly levelling, check leveling and profile		ng an
		levelling (L-section and X-section) only (Numerical		area
		problems)		with a
				plane
				table (at
				least
				five
				lines)
	1	Problem on reduction of levels, Errors in levelling	10	IV. Layout of
		Assignment		Buildings (from
10 th	2	Plane Table Surveying		given drawing of
10	2	Introduction and Definition of plane table		two room
		*		residential
		surveying, Advantages & Disadvantages of plane		
		table surveying Revision		building) by use
		Revision		of surveying
				instruments.
	1	Equipment used in plane table survey, Setting of a	11	-Do-
		plane table: (a) Centering (b) Levelling (c)		
		Orientation		
11 th	2	Methods of plane table surveying (a) Radiation, (b)		
		Traversing		
	1	Errors in plane table survey		
	2	Contouring	12	-Do-
12 th		Definition and Purpose of contours, Contour		
		interval and horizontal equivalent		
	1	Factors effecting contour interval	13	
	2	Characteristics of contours		V. Contouring: i)
				Preparing a contour

13th				plan by radial line method by the use of a Auto level. ii) Preparing a contour plan by method of squares
	1	Methods of contouring: Direct and indirect	14	iii) Preparing a
14 th	2	Use of stadia measurements in contour survey		contour plan of a
		Assignment		Road/Railway
				track/Canal by
				taking cross
				sections.
	1	Interpolation of contours; use of contour map	15	iv) Computation of
	2	Drawing cross section from a contour map; marking		earth work and
15 th		alignment of a road, railway line and a canal on a		reservoir capacity
		contour map		from a contour map
		Revision		