Name of the Faculty	:	Mr. Rahul Nehra
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	Electrical Machines-II

Lesson Plan Duration : 13-15 Week

Week	Theory		Practical	
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс
	1	Introduction to 3-Phase Induction Motor	1	Determination of efficiency by (a) no load test and blocked rotor test on an induction motor (b) direct loading of an I.M.
	2	Constructional features of squirrel cage and slip ring 3-phase induction Motors	2	Determination of effect of rotor resistance on torque speed curve of an induction motor
	3	Principle of operation, slip and its significance	3	Observe the performance of Ceiling fan without capacitor To study the effect of a capacitor on the performance single phase induction motor and reverse the direction of rotation.
	4	Locking of rotor and stator fields	4	To plot relationship between no load terminal voltage and excitation current in a synchronous generator at constant speed
	5	Rotor resistance, inductance	5	Determination of the relationship between the voltage and load current of an alternator, keeping excitation and speed
	6	Relationship between copper loss and motor slip	6	Determination of the regulation and efficiency of alternator from the open circuit and short circuit test
	7	Power flow diagram of an induction motor	7	Determination of the effect of variation of excitation on performance of a synchronous motor
	8	Factors determining the torque, Torque-slip curve, stable and unstable zones		
	9	Effect of rotor resistance upon the torque slip relationship		
	10	Double cage rotor motor and its applications		
	11	Starting of 3-phase induction motors,		

	DOL	
12	Star-delta, auto transformer starting	
12	Causes of low power factor of induction	
13	motors	
14	Testing of 3-phase induction motor on no	
14	load	
15	And blocked rotor test and to find	
15	efficiency	
16	Speed control of induction motor	
 17	Harmonics and its effects	
18	Cogging and crawling in Induction Motors	
19	Specification and rating of induction	
19	motor	
20	Single phase induction motors	
21	Construction characteristics and	
21	applications	
22	Nature of field produced in single phase	
	induction motor	
23	Split phase induction motors	
24	Type of Induction Motor	
25	Capacitors start and run	
26	Shaded pole	
27	Alternating current series motor and	
	universal motors	
28	1-phase synchronous motor Reluctance	
	type	
29	Brief description about Synchronous	
 -	Motor	
 30	Hysteresis motor	
31	Synchronous Machines	
	Main Construction features of	
32	Synchronous Machines including	
	commutator and brushless excitation	
 	system.	
33	Production of rotating magnetic field in a 3- phase winding	
 34	Generation of 3-phase emf	
	Concept of distribution factor and emf	
35	equation	
36	Armature reaction at unity, lag and leading	
30	power factor	
37	Equivalent circuit diagram of	
57	synchronous machine	
	Concept of voltage regulation.	
38	Determination of voltage regulation by	
	synchronous impedance method.	
39	Operation of single synchronous machine	

	independently supplying a load.	
	Concept of infinite bus bar. Need and	
40	necessary conditions of paralleloperation	
-10	of alternators, Synchronizing analternator	
	(Synchroscopemethod) with the bus bars	
41	Operation of synchronous machine as a motor	
	-its starting methods	
	Effect of change in excitation of a	
42	synchronous motor, V curve, Concept	
	of synchronous condenser.	
43	Concept and cause of hunting and its	
	prevention	
44	Specification, rating and cooling of	
	synchronous machines	
45	Applications of synchronous machines	
	Construction, working principle and	
46, 47	application of linear induction motor,	
40, 47	steppermotor, AC Servomotor,	
	Submersible Motor,	
48	Revision of Topics already covered	
49	Class Test	
50	Problems, Doubts & their solution	
51	Revision of important topics	

Name of the Faculty	:	Mr. Ashish Kumar Yadav
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	UTILIZATION OF ELECTRICAL ENERGY
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical	
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс
	1	Advantage of Electric heating		
	2, 3	Heating Methods :Resistance heating		
		- direct and indirect resistance		
		heating, electric ovens, their		
		temperature range, properties of		
		resistance heating elements,		
		domestic water heaters and other		
		heating appliances, thermostat control circuit		
	4	Induction heating; principle of core		
		type and coreless induction furnace, their construction and applications		
	5	Electric arc heating; direct and		
		indirect arc heating, construction,		
		working and applications of arc furnace		
	6, 7	Dielectric heating, applications in		
		various industrial fields		
		Infra-red heating and its applications		
		(construction and working of two appliances)		
	8	Microwave heating and its		
		applications (construction and		
		working of two appliances), Solar Heating		
	9	Calculation of resistance heating elements (simple problems)		
	10, 11	Advantages of electric welding,		
		Welding method,		
		Principles of resistance welding,		
		types – spot, projection, seam and		
		butt welding, welding equipment		
	12, 13	Principle of arc production, electric		
		arc welding, characteristics of arc;		
		carbon arc, metal arc, hydrogen arc		
		welding method and their		
		applications. Power supply		
		requirement. Advantages of using		
		coated electrodes, comparison between AC and DC arc welding,		
		welding control circuits, welding of		
		weiging control circuits, weiging of		

	aluminum and copper	
14, 15	Need of electro-deposition,	
	Laws of electrolysis, process of	
	electro-deposition - clearing,	
	operation, deposition of metals,	
16	polishing and buffering, Equipment	
	and accessories for electroplating	
17	Factors affecting electro-deposition,	
	Principle of galvanizing and its	
	applications	
18	Principles of anodizing and its	
10	applications	
19	Electroplating of non-conducting	
20	materials Manufacture of chemicals by	
20	electrolytic process	
21, 22	Principle of air conditioning	
23, 24	Description of Electrical circuit used in	
	a) Refrigerator,	
	b) Air-conditioner, and	
	c) Water cooler	
25	Advantages of electric drives,	
	Characteristics of different	
	mechanical loads	
26	Types of motors used as electric drive	
28	General idea about the methods of	
	power transfer by direct coupling by	
	usingdevices like belt drive, gears,	
	chain drives etc.	
29	Examples of selection of motors for	
20	differenttypes of domestic loads	
30	Selection of drive for applications	
	such as general workshop, textile mill, paper mill, steel mill, printing press,	
	crane and lift etc. Application of	
	flywheel.	
31, 32	Selection of motors for Domestic	
	Appliances	
33, 34	Advantages of electric traction over	
	other types of traction.,	
	Different systems of electric traction,	
	DC and AC systems, diesel electric	
	system, types of services – urban,	
	sub-urban, and main line and their	
	speed-time curves.	
35, 36	Different accessories for track	
	electrification; such as overhead	
	catenary wire, conductor rail system,	
07.00	current collector-pentagraph	
37, 38	.	
39	Electrical block diagram of an electric	
	locomotive with description of various	
40	equipment and accessories used.	
40	Types of motors used for electric	
	traction	

41	Power supply arrangements	
42	Starting and braking of electric locomotives	
43	Introduction to EMU and metro railways	
44	Train Lighting Scheme	
45,46	Revision of Topics	

Name of the Faculties	:	Mr. Amit Kumar, Mr. Ashish Kumar Yadav, Mr. Rahul Nehra, Mr. Prankit Gupta
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	PROGRAMMABLE LOGIC CONTROLLERS & MC
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical	
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс
	1, 2, 3, 4, 5, 6	Introduction to PLC, What is PLC, concept of PLC, Building blocks of limitations of relays. Advantages of PLCs over programming languages, PLC manufacturer etc. PLC, Functions of various blocks,	1, 2	Components/sub-components of a PLC, Learning functions of different modules of a PLC system
	7, 8	Basic operation and principles of PLC	3, 4	Practical steps in programming a PLC (a) using a Hand held programmer (b) using computer interface
	9, 10	Architectural details processor	5, 6	Demonstration to step 5 programming language, ladder diagram concepts, instruction list syntax
	11, 12	Memory structures, I/O structure	7, 8	Basic logic operations, AND, OR, NOT functions
	13, 14	Programming terminal, power supply	9	Logic control systems with time response as applied to clamping operation
	15	Basic instructions like latch, master control self holding relays	10	Sequence control system e.g. in lifting a device for packaging andcounting
	16	Timer instruction like retentive timers, resetting of timers	11	Use of PLC for an application(teacher may decide)
	17	Counter instructions like up counter, down counter, resetting of counters	12	Demonstration and study of Architecture of 8085 kit
	18	Arithmetic Instructions (ADD,SUB,DIV,MUL etc.)	13	Testing of general input/output on Micro controller board
	19	MOV instruction	14	Controlling of LED using Microcontroller Programme
	20	RTC(Real Time Clock Function)		
	21, 22	Comparison instructions like equal, not equal, greater, greater than equal, less than, less than equal		
	23, 24, 25, 26, 27	Programming based on basic instructions, timer, counter, sequencer, and comparison instructions using ladder program.		
	28	Assembly,		

	Packaging,	
	Process controls	
29, 30	Car parking,	
	Doorbell operation,	
	Traffic light control	
31, 32	Microwave Oven,	
	Washing machine,	
	Motor in forward and reverse direction	
33, 34,	Star-Delta, DOL Starters,	
35	Paint Industry,	
	Filling of Bottles,	
00.07	Room Automation	
 36, 37 38	Introduction to SCADA Pin details	
	I/o Port structure	
39, 40		
41, 42, 43	Memory Organisation	
44, 45,	Special function registers	
 46	Time on on enotion	
 47, 48	Timer operation	
49, 50	Serial Port operation	
51, 52	Interrupts	
53, 55	Assemblers and Compilers	
55, 56,	Keypad interface, 7- segment	
57	interface, LCD, stepper motor. A/D,	
	D/A, RTC interface.	
58	_	
	Application of Micro controllers	
59, 60 61	Revision of Topics already covered Class Test	
62	Problems, Doubts & their solution	
-	,	
63, 64	Revision of important topics	

Name of the Faculty	:	Mr. Amit Kumar
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	INSTRUMENTATION
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс	
	1	Importance of measurement	1	To measure the level of a liquid using a transducer	
	2	Basic measuring systems	2	To measure temperature using a thermo-couple	
	3	Advantages and limitationsof each measuring systems	3	Study and use of digital temperature controller	
	4	Generalized measurement system	4	Use of themistor in ON/OFF transducer	
	5, 6, 7, 8	Signal conditioningand display devices	5	Study of variable capacitive transducer	
	9	Transducers: Theory	6	Draw the characteristics of a potentiometer	
	10, 11	Construction and use of various transducers like resistance	7	To measure linear displacement using LVDT	
	12	Inductance,capacitance	8	To study the use of electrical strain gauge	
	13	Electromagnetic	9	To study weighing machine using load cell	
	14, 15	Piezo electric type	10	To study pH meter	
	16	Displacement Measuring Devices: wire wound potentiometer			
	17	LVDT			
	18, 19, 20	Straingauges and their differenttypes such as inductance type, resistive type, wire and foil type etc.			
	21	Gauge factor, gauge materials, and their selections			
	22, 23	Sources of errorsand itscompensations			
	24	Use of electrical strain gauges			
	25, 26, 27	Strain gauge bridges and amplifiers			
	28, 29	Different types of force measuring devices and their principles			
	30	Loadmeasurements by using elastic Transducers			
	31	Loadmeasurements by using electrical strain gauges			
	32	Loadcells, proving rings			

33, 3	, 34 Measurements of torque by brake,	
	dynamometer	
35	Electricalstrain gauges	
36	Speed measurements; different	
	methods, devices.	
37	Bourdon pressure gauges, electrical	
	pressure pick ups and their principle	
38	Construction and applications	
39	Use of pressure cells	
40	Basic principles of magnetic and	
	ultrasonic flow meters	
41	Bimetallic thermometer	
42	Pressure thermometers	
43, 4	, 44 Thermoelectric thermometers,	
	resistance thermometers,	
	thermocouple, thermisters and	
	pyrometer	
45	Errors intemperature measurements	
	in rapidly moving fluids. Temperature	
	recorders	
46, 4		
	quantities such as humidity, pH level	
	andvibrations	
48	Revision of Topics already covered	
49	Class Test	
50	Problems, Doubts & their solution	
51	Revision of important topics	

Name of the Faculty	:	Mr. Amit Kumar
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	ELECTRICAL POWER -I

Lesson Plan Duration : 13-15 Week

Week	Theory		Practical		
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс	
	1	Main resources of energy			
	2	Conventional and non- conventional			
	3	Different types of power stations, thermal, hydro, gas			
	4	Diesel and nuclear power stations			
	5, 6	Flow diagrams and brief details of their operation, Comparison of the generating stations on the basis of running cost, site, starting, maintenance			
	7	Importance of non-conventional sources of energy in the present scenario			
	8	Brief details of solar energy, bio- energy, wind energy			
	9	Fixed and running cost			
	10	Load estimation, load curves, demand factor			
	11	Load factor, diversity factor, power factor and their effect on cost of generation, simple problems there on			
	12, 13	Base load and peak load power stations, inter-connection of power stations and its advantages, concept of regional and national grid			
	14, 15	Layout of transmission system, selection of voltage for H.T and L.T lines, advantages of high voltage for Transmission of power in both AC and DC			
	16, 17	Comparison of different systems: AC versus DC for power			
	40	transmission			
	18	Conductor material and sizes from standard tables			

10	The second summer to the second		
19	Types of supports, types of insulators		
20	Types of conductors, Selection of		
	insulators, conductors, earth wire		
	and their accessories		
21	Transposition of conductors and		
21	•		
	string efficiency of suspension		
	type insulators, Bundle		
	Conductors		
22	Mechanical features of line: Importance of sag, calculation of sag		
23, 24	Effects of wind and ice related		
20, 24	problems; Indian electricity rules		
	pertaining to clearance		
25, 26,	Electrical features of line:		
20, 20,	Calculation of resistance inductance		
	and capacitance without derivation		
	in a.c. transmission line, voltage		
	regulation, and concept of corona.		
28	Effects of corona and remedial		
	measures		
 29	Transmission Losses		
30	Lay out of HT and LT distribution		
	system		
31	Constructional feature of distribution lines and their erection		
32, 33	LT feeders and service mains; Simple		
	problems on AC radial distribution		
	system, determination of size of		
	conductor		
34	Preparation of estimates of HT and		
	LT lines (OH and Cables).		
35, 36	Constructional features of LT (400 V), HT		
	(II kV) underground cables, advantages		
	and disadvantages of underground		
	system with respect to overhead system		
37	Calculation of losses in distribution		
	system		
38, 39	Faults in underground cables-		
	determine fault location by Murray		
	Loop Test		
40	Varley Loop Test		
41, 42	Brief idea about substations; out door grid	l l	
,	sub-station 220/132 KV, 66/33 KV		
	outdoorsubstations		
 43			
40	Pole mounted substations and indoor substation		
44, 45,	Layout of 33/11 and kV/400V	F	
46	distribution substation and various		
	auxiliaries and equipment		
	associated with it		
 47	Concept of power factor Reasons		
41	and disadvantages of low power factor		
	and disadvantages of low power lactor		

48	Methods for improvement of power factor using capacitor banks, VAR Static Compensator (SVC)	
49	Revision of Topics already covered	
50	Class Test	
51	Problems, Doubts & their solution	