Name of the faculty: Sh. Sandeep Dhandhi Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 5th Mechanical A & B

Subject: CNC Machines and

Automation Lesson Plan Duration:

15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 03, Practicals-02

Week		Theory	Pra	actical
	Lectu re day	Topic (including assignment / test)	Practical Day	Торіс
1 st	1 st 2 nd	Introduction to NC, CNC & DNC Their advantages, disadvantages and applications.	1 st	Study of constructional detail of CNC lathe
	3 _{rd}	Basic components of CNC machines.	2 nd	Study of constructional detail of CNC lathe
2 nd	1 st 2 nd	Machine Control Unit. Input devices selection of components to be machined on CNC machines.	1 st	Study of constructional detail of CNC milling machine
	3 rd	Axis identification.	2 nd	Study of constructional detail of CNC milling machine
3rd	1 st	Design features, specification of CNC machines.	1 st	Study the constructional details and working of
	2 nd	Use of slideways, balls, rollers and coatings, motor and leadscrew, swarf removal, safety and guarding devices.		Automatic tool changer and Multiple pallets
	3rd	various cutting tools for CNC machines.	2 nd	Study the constructional details and working of Automatic tool changer and Multiple pallets
4 th	1 st	Concept of CNC tool holder.	1 st	Develop a part programme
	2 nd	different pallet systems and automatic tool changer system.		for following lathe operations and make the job on CNC lathe. - Plain turning and facing operation - Taper turning operation - Circular interpolation

	3 rd	Management of a tool room.	2 nd	Develop a part programme for following lathe operations and make the job on CNC lathe. - Plain turning and facing operation - Taper turning operation - Circular interpolation
5 th	1 st	Control system	1 st	Develop a part programme
	2 nd	Open loop and Closed Loop system		for the following milling operation and make the job on CNC milling - Plain milling - Slot milling - Contouring - Pocket milling
	3 rd	concept of Actuators	2 nd	Develop a part programme for the following milling operation and make the job on CNC milling - Plain milling - Slot milling -

				Contouring - Pocket milling
6 th	1 st	Transducers and Sensors	1 st	Preparation of work
	2 nd	Tachometer		instructions for machine operator
	3rd	LVDT	2 nd	Preparation of work instructions for machine operator
7 th	1 st	opto- interrupters		Preparation of preventive
	2 nd	potentiometers of linear		maintenance schedule for CNC machine.
	3rd	angular position		Preparation of preventive maintenance schedule for CNC machine.
8 th	1 st	encoder	1 st	Demonstration through
	2 nd	decoder		industrial visit for awareness of actual working of FMS in production.
	3 rd	axis drives	2 nd	Demonstration through industrial visit for awareness of actual working of FMS in production.
9 th	1 st	Introduction to part programming		
	2 nd	basic concepts of part programming		
	٦rd	NC words		
10 th	1 st	part programming formats		
	2 nd	simple programming for rational components		
	3 rd	part programming using conned cycles		
11 th	1 st	subroutines and do loops, tool off sets		
	2 nd	cutter radius compensation and tool wear compensation.		
	3rd	Common problems in CNC machines related to mechanical		
12 th	1 st	Electrical and pneumatic, electronic components.		
	2 nd	Study of common problem and remedies.		
	<u>3</u> rd	Use of on- time fault finding diagnosis tools in CNC machines.		
13 th	1 st	Concept of automation		
	2 nd	emerging trends in automation		
	3 rd	automatic assembly		
14 th	1 st	Overview of FMS		
	2 nd	Group technology	1	
	3 rd	CAD/ CAM and CIM.		
15 th	1 st	Introduction to robot technology		
	2 nd	basic robot motion		

	3 rd	Its applications.	
	. 1		

Name of the faculty: Sh. Vikas Goel Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 5th Mechanical A & B

Subject: REFRIGERATION AND AIR CONDITIONING

Lesson Plan Duration: 15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 04, Practicals- 02

Week	т	heory	Prac	Practical	
	Lecture day	Topic (including assignment / test)	Practical Day	Торіс	
1 st	1 st	Introduction to refrigeration, and air conditioning	1 st	Identify various tools of refrigeration kit and practice	
	2 nd	meaning of refrigerating effect, units of refrigeration		in cutting, bending, flaring, swaging and brazing of tubes.	
	3 rd	COP, methods of refrigeration	2 nd	Identify various tools of refrigeration kit and practice	
	4 th	Introduction to air refrigerator		in cutting, bending, flaring, swaging and brazing of tubes.	
2 nd	1 st	working on reversed carnot cycle.	1 st	Study of thermostatic switch,	
	2 nd	Introduction of vapour compression system		LP/HP cut out overload protector filters, strainers and filter driers	
	3rd	Principle of vapour compression system	2 nd	Study of thermostatic switch, LP/HP cut out overload	
	4 th	function of vapour compression system		protector filters, strainers and filter driers	
3 rd	1 st	parts of vapour compression system,	1 st	Identify various parts of a refrigerator and window air conditioner. Identify various parts of a refrigerator and window air conditioner.	
	2 nd	necessity of vapour compression system,			
	3 rd	φT- Chart			
	4 th	p– H chart.			
4 th	1 st	dry, wet and superheated compression.	1 st	To find COP of Refrigeration system	
	2 nd	Effect of sub cooling			
	3 rd	super heating	2 nd	To find COP of Refrigeration	
	4 th	mass flow rate		system	
5 th	1 st	entropy, enthalpy	1 st	To detect trouble/faults in a	
	2 nd	work done		refrigerator/window type air conditioner	
	२ rd	Refrigerating effect	2 nd	To detect trouble/faults in a refrigerator/window type air	
	4 th	СОР		conditioner	
6 th	1 st	actual vapour compression system	1 st	Charging of a refrigerator/window type air	

	2 nd	Functions of refrigerants		conditioner.
	3 rd	classification of refrigerants	2 nd	Charging of a
	4 th	properties of R - 717		refrigerator/window type air conditioner.
7 th	1 st	properties of R - 22	1 st	Study of cut section of single
	2 nd	Properties of R–134 (a) and CO2		cylinder compressor
	3rd	Properties of ideal refrigerant	2 nd	Study of cut section of single cylinder compressor
	4 th	selection of refrigerant		
8 th	1 st	Introduction of simple absorption	1 st	Visit to an ice plant, cold
		system		storage plant, central air conditioning plant
	2 nd	Introduction of domestic		
		electrolux refrigeration systems		
	3 rd	Principle of simple absorption	2 nd	Visit to an ice plant, cold
		system		storage plant, central air
	4 th	Principle of domestic electrolux		conditioning plant
		refrigeration systems		
9 th	1 st	Working of simple absorption		
		system		
	2 nd	Working of domestic electrolux		
		refrigeration systems		
	3rd	Solar power refrigeration system		
	4 th	advantages of solar power		
		refrigeration system over vapour		
		compression system.		
10 th	1 st	disadvantages of solar power		
		refrigeration system over vapour		
		compression system.		
	2 nd	Refrigeration Equipment		
	3 rd	Compressor		
	4 th	Function of compressors		
11 th	1 st	Various types of compressors.		
	2 nd	Condenser - Function		
	3 rd	various types of condensers		
	4 th	Evaporator - Function, types of evaporators		
12 th	1 st	Expansion Valve - Function, various		
17.	130	types such as capillary tube,		
		thermostatic expansion valve		
	2 nd	low side and high side float valves,		
	Í	application of various expansion		
		valves		
	3 rd	Safety Devices-Thermostat		
	4 th	Safety Devices- overload protector LP		
1.3 th	1 st	Safety Devices-HP cut out switch		
1.3	7 nd	Definition of Psychrometry	1	
	3rd	importance of Psychrometry	1	
	4 th	specific humidity, relative humidity	4	
	_			
14 th	1 st	degree of saturation		

	2 nd	DBT, WBT, DPT	
	3 rd	sensible heat, latent heat.	
	4 th	Total enthalpy of air	
1.5 th	1 st	Psychrometry chart and various processes of psychrometry	
	2 nd	Study of window air-conditioning	
	3 rd	split type air conditioning	
	4 th	concept of central air- condition,	
		automobile air-conditioning	

Name of the faculty: Sh. Kuldeep Singh Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 5th Mechanical A &

B Subject: THEORY OF

MACHINES

Lesson Plan Duration: 15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 04

Week	Т	heory	Practical	
	Lecture day	Topic (including assignment / test)	Practical Day	Торіс
1 st	1 st	Simple Mechanisms	1 st	
•	2 nd	Introduction to link		
	3 rd	kinematic pair	2 nd	
	4 th	lower and higher pair		
2 nd	1 st	Kinematic chain	1 st	
	2 nd	mechanism		
	3 rd	Inversions	2 nd	
	4 th	Different types of mechanisms (with examples)		
3 rd	1 st	Introduction to Belt	1 st	
	2 nd	Introduction to Rope drives		
	3 rd	Types of belt drives	2 nd	
	4 th	types of pulleys		
4 th	1 st	Concept of velocity ratio	1 st	
	2 nd	slip and creep		
	3 rd	crowning of pulleys (simple	2 nd	
	4 th	numericals) condition for maximum horse power (simple numericals)	-	
5 th	1 st	Different types of chains and	1 st	
	2 nd	their terminology		
	3 rd	Gear terminology	2 nd	
	4 th	types of gears	1	
6 th	1 st	applications of gears	1 st	
	2 nd	simple gear train.		
	3 rd	compound gear train	2 nd	
	4 th	power transmitted by simple spur gear		
7 th	1 st	Principle of flywheel	1 st	
	2 nd	applications of flywheel		

	3 rd	Turning - moment diagram of	2 nd	
		flywheel for different engines		
	4 th	Turning - moment diagram of		
		flywheel for different engines		
8 th	1 st	Fluctuation of speed	1 st	
	2 nd	fluctuation of energy		
	3 rd	Coefficient of fluctuation of speed	2 nd	
	4 th	coefficient of fluctuation of energy		
9 th	1 st	Simple numerical problems on		
		fluctuation of speed		
	2 nd	Simple numerical problems on		
		fluctuation of energy		
	3 rd	Principal of governor		
	4 th	Simple description		
10 th	1 st	working of Watt		

	2 nd	Porter and Hartnel governor	
		(simple numericals based on watt	
		governor)	
	3 rd	Hunting	
	4 th	isochronism	
11 th	1 st	stability	
	2 nd	sensitiveness of a governor	
	3 rd	Revision	
	4 th	Concept of balancing	
12 th	1 st	Introduction to balancing of	
		rotating masses	
	2 nd	simple numericals on balancing.	
	3 rd	Simple problems related to several	
		masses rotating in different planes	
	4 th	Simple problems related to several	
		masses rotating in different planes	
13 th	1 st	Revision	
	2 nd	Concept of vibrations	
	3 rd	Types of vibrations.	
	4 th	longitudinal	
14 th	1 st	transverse	
	2 nd	torsional vibrations	
	3 rd	Simple numerical on vibrations.	
	4 th	Damping of vibrations	
15 th	1 st	Causes of vibrations in machines	
	2 nd	harmful effects on vibrations	
	3 rd	remedies	

Lesson

Plan

Name of the faculty: Sh. Narender Sharma W/S.

Discipline: Mechanical

Semester: 5th Mechanical A & B

Subject: WORKSHOP TECHNOLOGY - III

Lesson Plan Duration: 15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 03

Week		Theory		actical
	Lectu re day	Topic (including assignment / test)	Practical Day	Торіс
1 st	1 st	Specification and working principle of milling machine		
	2 nd	Classification, brief description and applications of milling machine		
	3 rd	Main parts of column and knee type milling machine		
2 nd	1 st	Milling machine accessories and attachment – Arbors, adaptors, collets, vices,		
	2 nd	circular table, indexing head and tail stock, vertical milling attachment		
	3rd	Milling methods - up milling and down milling		
3 rd	1 st	Identification of different milling cutters and work mandrels		
	2 nd	Work holding devices		
	3rd	Milling operations – face milling, angular milling, form milling		
4 th	1 st	straddle milling and gang milling		
	2 nd	Cutting parameters		
	3 rd	Indexing on dividing heads, plain and universal dividing heads.		
5 th	1 st	Indexing methods: direct, Plain or simple, compound, differential and angular indexing, numerical problems on indexing.		
	2 nd	Purpose of grinding		
	3rd	Various elements of grinding wheel – Abrasive		
6 th	1 st	Grade, structure, Bond		

	2 nd	Common wheel shapes and types of wheel – built up wheels, mounted wheels and diamond wheels	
	3rd	Specification of grinding wheels as per BIS.	
7 th	1 st	Truing, dressing	
	2 nd	balancing and mounting of wheel	
	3rd	Grinding methods – Surface grinding, cylindrical grinding	
8 th	1 st	centreless grinding	
	2 nd	Grinding machine – Cylindrical grinder	
	3rd	surface grinder, internal grinder	
9 th	1 st	centreless grinder, tool and cutter	
		grinder	
	2 nd	Selection of grinding wheel	

	3 rd	Gear Manufacturing and Finishing	
	1 [°]	Processes	
10 th	1 st	Gear hobbing , Gear shaping	
	2 nd	Mechanical Process - Ultrasonic	
		machining (USM): Introduction,	
		principle, process	
	3 rd	advantages and limitations,	
		applications of USM	
11 th	1 st	Electro Chemical Processes - Electro	
		chemical machining (ECM) –	
		Fundamental principle, process,	
		applications	
	2 nd	Electro chemical Grinding (ECG) –	
		Fundamental principle, process, application	
	Ord	Electrical Discharge Machining (EDM)	
	3 rd	- Introduction, basic EDM circuit,	
		Principle, metal removing rate,	
		dielectric fluid, applications	
12 th	1 st	Laser beam machining (LBM) –	
12	1	Introduction, machining process and	
		applications	
	2 nd	Electro beam machining (EBM)-	
		Introduction, principle, process and	
		applications	
	3 rd	Metal spraying – Wire process,	
		powder process, applications	
13 th	1 st	Powder coating	
	2 nd	Purpose of finishing surfaces.	
		Surface roughness-Definition and	
		units	
	3 rd	Honing Process, its applications	
14 th	1 st	Description of hones	
	2 nd	Brief idea of honing machines.	
	3 rd	Lapping process, its applications	
15 th	1 st	Description of lapping compounds	
		and tools.	
		Brief idea of lapping machines	
	2 nd	Super finishing process, its	
		applications.	
	3rd	Polishing	
		Buffing	

Name of the faculty: Sh. Aakash Suran Lecturer & Sh. Mohit Kadyan Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 5th Mechanical A &

B Subject: Machine Design

Lesson Plan Duration: 15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 04

Week	Theory		Practical	
	Lecture	Topic (including assignment /	Practical	Торіс
	day	test)	Day	
1 st	1 st	Design – Definition, Type of design,	1 st	
		necessity of design		
		Comparison of designed and		
		undesigned work		
	2 nd	Design procedure		
		Characteristics of a good designer		
	3 rd	Design terminology: stress, strain,	2 nd	
		factor of safety, factors affecting		
		factor of safety, stress concentration,		
		methods to reduce stress		
		concentration, fatigue,		
		endurance limit.		
	⊿ th	General design consideration		
		Codes and Standards (BIS standards)		
2 nd	1 st	Engineering materials and their	1 st	
		mechanical properties :		
		Properties of engineering materials:		
		elasticity, plasticity, malleability,		
		ductility, toughness, hardness and		
		resilience.		
	2 nd	Fatigue, creep, tenacity and strength		

				1
		etc.		
		Selection of materials, criteria of		
		material selection		
	3 rd	Design Failure	2 nd	
	. '	Various design failures-maximum	Z	
		stress theory		
			-	
	4 th	Various design failures- maximum		
		strain theory		
3 rd	1 st	Classification of loads	1 st	
	2 nd	Design under tensile, compressive		
		and torsional loads.		
	3rd	Revision	2 nd	
	4 th	Doubt Class		
4 th	1 st	Design of Shaft	1 st	
		3.1 Type of shaft, shaft materials,		
		Turne of log ding on shoft standard	-	
	2 nd	Type of loading on shaft, standard		
		sizes of		
		shaft available		
	3 rd	3.2 Shaft subjected to torsion only,	2 nd	
		determination of shaft diameter	L	
		(hollow and solid		
		shaft) on the basis of :		
		- Strength criterion		
	4 th	3.2 Shaft subjected to torsion only,		
		determination of shaft diameter		
		(hollow and solid		
		shaft) on the basis of :		
		- Rigidity criterion		
5 th	1 st	1 st Sessional	1 st	
	2 nd	1 st Sessional		
	3 rd	1 st Sessional	2 nd	
		Determination of chaft diameter		
	4 th	Determination of shaft diameter		
		(hollow) subjected to		
		bending		
6 th	1 st	Determination of shaft diameter	1 st	
		(solid shaft) subjected to	-	
		bending		
		Determination of shaft diameter		
	2 nd			
		(hollow) subjected to combined		
		torsion and bending .		
	3 rd	Determination of shaft diameter	2 nd	
		(solid shaft) subjected to combined		
		torsion and bending .		
			1	
	4 th	Design of Key		
		Types of key, materials of key,		
		functions of key		
7 th	1 st	Failure of key (by Shearing and	1 st	
1		Crushing).		
	2 nd	Design of key (Determination of key		
	2 nd	Design of key (Determination of key dimension)		

	3 rd	Effect of keyway on shaft strength.	2 nd
		(Figures and problems).	
	4 th	Revision	
8 th	1 st	Revision	1 st
	2 nd	Design of Joints	
		Types of joints - Temporary and	
		permanent joints, utility of various	
		joints	
	3 rd	Temporary Joint:	2 nd
		Knuckle Joints – Different parts of	
		the joint, material used for the joint,	
	4 th	type of knuckle Joint, design of the	
		knuckle joint. (Figures and	
		problems).	
9 th	1 st	Cotter Joint – Different parts of the	
		spigot and socket joints, Design of	
		spigot and socket joint.	
	2 nd	Permanent Joint:	
		Welded Joint - Welding symbols. Type of welded joint, strength of	
		parallel and transverse fillet welds.	
	3 rd	Strength of combined parallel and	
		transverse weld.	
		Riveted Joints. : Rivet materials, Rivet heads, leak proofing of riveted	
		joint – caulking and fullering.	
	4 th	Different modes of rivet joint failure.	
		Design of riveted joint – Lap and	
		butt, single and multi riveted	
10 th	1 st	joint. 2 nd Sessional	
10	2 nd	2 nd Sessional	
	3 rd	2 nd Sessional	
	4 th	Design of Flange Coupling	
		Necessity of a coupling, advantages	
11 th	1 st	of a coupling,	
	2 nd	types of couplings, design of muff	
		coupling,	
	3 rd	design of flange coupling. (both	
		protected type and unprotected type).	
	4 th	Revision	
a ath		Design of Screwed Joints	
12 th	1 st		
	2 nd	Introduction, Advantages and	
		Disadvantages of screw joints,	

	3 rd	location of screw	
		joints.	
		Important terms used in screw	
		threads,	
	4 th	Designation of screw threads	-
1.3 th	1 st	Initial stresses due to screw up	
		forces, stresses due to combined	
		forces	
	2 nd	Design of power screws (Press,	
		screw jack)	
	3 rd	Design of power screws (screw	
		clamp)	
	4 th	Doubt Class	
		3 rd Sessional	
14 th	1 st		
	2 nd	3 rd Sessional	
	3 rd	3 rd Sessional	
	4 th	Revision	
15 th	1 st	Remedial Class	
	2 nd	Remedial Class	
	3 rd	Revision	