Lesson Plan

Name of the faculty: Sh. Vikas Goel, Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 4th Mechanical A & B

Subject: Hydraulics and Pneumatic

Lesson Plan Duration: 15 weeks (From January, 2020 to April, 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 03, practicals-02

Week	Theory		Pra	octical
	Lecture	Topic (including	Practical	Торіс
	day	assignment / test)	Day	
1 st	1 st	Introduction to Hydraulics and Pneumatics. Fluid, types of fluid	1 st	 Measurement of pressure head by employing. i) Piezometer tube ii) Simple U-tube manometer iii) Bourdon.s tube pressure gaug
	2 nd	Properties of fluid viz mass density, weight density (specific weight), specific volume, capillarity, specific gravity, viscosity,	2 nd	2. Verification of Bernoulli's theorem.
	3 rd	Compressibility, surface tension, kinematic viscosity and dynamic viscosity and their units. Simple numeric problems related to properties of fluids.		
	1 st	Concept of pressure, Intensity of pressure, static pressure and pressure head. Types of Pressure (Atmospheric Pressure, Gauge Pressure, Absolute Pressure).		3. Measurement of flow by using venturimeter.
2 ND	nd			
	2 nd	Pressure measuring devices: Manometers and Mechanical Gauges		
	3 rd	Manometers: Piezometer, Simple U- tube Manometer, Micromanometer, Differential U-tube		

	1 st	Manometer, Inverted U-tube, Manometers Construction, working and application , including simple numerical problems.	4. To fin coeffic a vent	d out the value of cient of discharge for urimeter
3 RD	2 nd	Mechanical Gauges: Bourdon Tube pressure gauge, Diaphragm Pressure Gauge, Dead weight pressure gauge. Construction, working and application.		
		its applications.		
4 TH	1 st	revise numerical problems	5. To f frictio equati	ind coefficient of n for a pipe (Darcy's on).
	2 nd	revise numerical problems		
	3 rd	revise numerical problems		
	1 st	Types of fluid flow – Steady and Unsteady, Uniform and Non-uniform, Laminar and Turbulent; Rate of flow (Discharge) and its units		
5 TH	2 nd	Continuity Equation of Flow; Hydraulic Energy of a flowing fluid ; Total head	6. To st centrif recipro constr the h model	udy a single stage fugal pump and ocating pump for uctional details with elp of cut section s.
	3 rd	Bernoulli's Theorem statement (without proof) and its applications. Discharge measurement with the help of Venturimeter		
6 TH	1 st	Orifice meter, Pitot-tube, limitations of Bernoulli's theorem , simple numerical problems on above topics.		

	2^{nd}	Pipe and pipe flow, wetted	
		perimeter,	
		hydraulic mean	
		depth, hydraulic	
		gradient; loss of	
		head due to	
	rd	friction	
	3 rd	Chezy's equation and Darcy's	
		equation of	
		head loss	
	1 st	(without proof)	
	1	effect on pipe friction:	
		Water hammer	
		Simple numerical problems	
		on pipe friction.	
7^{TH}	2^{nd}	Nozzle - definition, velocity of	7. Study the working of
1		liquid flowing	Pelton wheel Francis and
		through the	Tenton wheel, Traners and
		nozzle, power	Kaplan turbine with the
		developed	help of working model.
	3 rd	revise numerical problems	
	5	Tevise numerical problems	
	1^{st}	revise numerical problems	
8^{TH}	2^{nd}	revise numerical problems	
	3^{rd}	revise numerical problems	
	1^{st}	Description, operation and	8. Study of hydraulic circuit
		application of –	of any available machine or
		hydraulic press	
9 TH			working model
	2^{na}	hydraulic jack	
	2rd	hydroulie ecouroulator	
	5 1 st	hydraulic brake	
10 TH	2^{nd}	hydraulic ram	
10	-		
	3 rd	hydraulic door closer	
	1^{st}	Concept of hydraulic	9. Study of pneumatic circuit
		pump. Classification of	of any available machine or
		pumps.	of any available machine of
			working model
11^{TH}	2^{nd}	Construction,	
		operation and	
		application of Single	
		acting reciprocating	
		1011100010	
	ard	pump,	
	3 rd	vane, screw and gear	
	3 rd	vane, screw and gear pumps.	
	3 rd	vane, screw and gear pumps.	
	3 rd	pump ,vane, screw and gearpumps.Construction, operation and application of	
	3 rd	vane, screw and gear pumps. Construction, operation and application of centrifugal	
TU	3 rd	pumpvane, screw and gear pumps.Construction, operation and application of centrifugal pump	
12 TH	3 rd 1 st 2 nd	pumpvane, screw and gear pumps.Construction, operation and application of centrifugal pumpTroubleshooting and	
12 TH	3 rd 1 st 2 nd	pumpvane, screw and gear pumps.Construction, operation and application of centrifugal pumpTroubleshooting problems in	
12 TH	3 rd 1 st 2 nd	pumpvane, screw and gear pumps.Construction, operation and application of centrifugal pumpTroubleshooting roblemsand problemspump	
12 TH	3 rd 1 st 2 nd	pumpvane, screw and gear pumps.Construction, operation and application of centrifugal pumpTroubleshooting problems in 	

		s, pitting,	
		cavitation,	
		priming	
	3^{rd}	Concept of a turbine,	
		classification of	
		turbines	
	1^{st}	types of turbines - impulse	
		and reaction	
		type (concept	
1.2TH		only) difference	
15	and	between them.	
	2"	Construction and	
		working of pelton	
	ord	Wheel, Francis turbine	
	3	Kapian turbines.	
	1^{st}	Introduction to oil	
		power hydraulics and	
		pneumatic system.	
		Relative Merits and	
		Demerits as oil power	
		hydraulic and	
		pneumatic system.	
	and	.	
	2"	Industrial applications	
		of oil power hydraulic	
14^{TH}		and pneumatic system.	
	2 rd	Pasia components of	
	5	hydraulic system	
		definition and functions	
		of each component in a	
		hydraulic circuit.	
		Hydraulic oils-	
		Classification and their	
		properties. Seals and	
		packing- classification	
		of seals, sealing	
		materials.	
	-4		
	1^{st}	Maintenance of hydraulic	
		system:	
		common faults	
		in hydraulic	
		system, simple	
		visual checks of	
		on, causes of	
		preventive	
		measures	
	2^{nd}	Basic Components of	
	-	Pneumatic Systems	
15^{TH}		definition and functions	
_		of each component in a	
		Pneumatic	
		circuit. Necessity of	
		Filter, Regulator and	
		Regulator(FLR).	
	- rd		
	314	Common problems in	
		pneumatic systems.	
		Maintenance schedule	
		of pneumatic systems.	

Lesson Plan

Name of the faculty: Sh. Rajeev Verma, Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 4TH Mechanical A & B

Subject: Materials and Metallurgy

Lesson Plan Duration: 15 weeks (Jan 2020 to April 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 04, Practicals- 02

Week	Theory		Pra	ctical	
	Lecture	Topic (including	Practical	Topic	
	day	assignment / test)	Day		
1 st	1 st	Material, Engineering materials.	1 st	Classificat	ion of about 25
	2 nd	History of material origin, Scope		specimen	s of materials/
		of Material Science.		machine p	oarts into
				i)	Metals and non
					metals
	3 rd	Overview of different	2 nd	ii)	Metals and
		engineering materials and			alloys
		applications			
	4 th	Importance, Classification of			
		materials, Difference b/w metals			
	-1	and non- metals.			
2 ^{na}	1 st	Physical and mechanical	1 st	iii)	Ferrous and non
		properties of various materials.			ferrous metals
	2 ^{na}	Present and future needs of			
		materials.			
	3 rd	Various issues of Material	2 nd	iv)	Ferrous and non
		Usage- Economical,			ferrous alloys.
		Environment and Social.			
	4 th	Overview of Biomaterials and			
	**	Semiconducting materials.	at		
3 ^{ra}	1 st	Fundamentals: Crystalline solid	1 st	Given a se	et of specimen of
		and amorphous solid.		metals an	d alloys; identify
	2 ^{na}	Unit cell, space lattice,		and indica	ite the various
		Arrangement of atoms in simple		properties	s possessed by
		cubic crystals, BCC, FCC and HCP		them.	
		Crystals.			

	2 rd	No. of atoms por unit coll	2 nd	Given a set of specimen of
	5	Atomic packing factor	2	diversa set of specimentor
		Atomic packing factor,		metals and anoys; identify
	_th	coordination number.	-	and indicate the various
	4"	Defects/ Imperfections, types		properties possessed by
		and effects in solid materials.		them.
4 th	1 st	Deformation: overview of	1 st	a) Study of heat
		deformation behavior and its		treatment furnace.
		mechanisms.		
	2 nd	Elastic and plastic deformation		
	3 rd	Behaviour of material under	2 nd	a) Study of heat
		load and stress- strain curve.		treatment furnace.
	4 th	Failure Mechanisms: overview		
		of failure modes, fracture,		
		fatigue and creep.		
5 th	1 st	Metallurgy: Introduction,	1 st	b) Study of a
		cooling curves of pure metals,		thermocouple/
		dendritic solidification of metals.		pyrometer
	2 nd	Effect of grain size o mechanical	-	
	-	properties		
	3 rd	Binary alloys Thermal	2 nd	c) Study of a
		equilibrium diagrams	2	thermocouple/
	1 th	Lover rule, solid solution allovs	-	nyrometer
	4	Level rule, solid solution alloys.		pyrometer
6 th	1 st	Ferrous Metals: Different iron	1 st	Study of a metallurgical
		ores		microscope and a
	2 nd	flow diagram for production of		specimen polishing
		iron and steel.		machine.
	3 rd	Allotropic forms of iron- alpha,	2 nd	Study of a metallurgical
		delta, gamma.		microscope and a
	4 th	Basic process of manufacturing	-	specimen polishing
		of pig iron and steel- making.		machine.
7 th	1 st	Cast Iron: Properties, types of	1 st	To prepare specimens of
		cast Iron		following materials for
	2 nd	Manufacture and their use	-	microscopic examination
	-	Wandbetare and their use.		and to Examine the
				microstructure of the
				speciments of following
				matorials
				illaterials.
				I) Brass II)
				copper III) Cast
				Iron iv) Mild
				Steel v)HSS
				vi) Aluminum

	3 rd	Steels: Plain carbon steels and	2 nd	To prepare specimens of
		alloy steel.		following materials for
	4 th	Classification of plain carbon		microscopic examination
		steels,		and to Examine the
				microstructure of the
				specimens of following
				materials.
				i) Brass ii)
				copper iii) Cast
				Iron iv) Mild
				Steel v)HSS
				vi) Aluminum
8 th	1 st	Properties of different types of	1 st	To anneal a given
		plain carbon steels.		specimen and find out
	2 nd	Application of different types of		difference in hardness as a
		plain carbon steels.		result of annealing.
	3 rd	Effect of various alloying	2 nd	To anneal a given
		elements on properties of steel.		specimen and find out
	4 th	Uses of alloy steels.		difference in hardness as a
				result of annealing.
9 th	1 st	Non ferrous Materials:	1 st	To normalize a given
		Properties		specimen and to find out
	2 nd	Uses of copper		the difference in hardness
			nd	as a result of normalizing.
	3'"	Aluminum and their alloys.	2 ^{nu}	To normalize a given
	4 th	Definition and objectives of heat		specimen and to find out
		treatment.		the difference in hardness
1 oth	a st		a st	as a result of normalizing.
10	1 ^{or}	Iron carbon equilibrium diagram	1.	To harden and temper a
	2"	Different microstructures of iron		specimen and to find out
		and steel.		the difference in hardness
	ard		and	due to tempering.
	3.2	Formation and decomposition of	2	To harden and temper a
	a th	Austenite		specimen and to find out
	4	Martensitic Transformation.		due to torenoring
11 th	1 st	Various heat treatment		due to tempering.
11	T	processes bardoning		
	and	Tomporing Appealing		
	2	normalizing		
	2 rd	Surface bardening carburizing		
	J th	Surface flatuerining, carburizing.		
	4 ¹¹	Nitriding, cyaniding.		
		Hardenability of Steels.		

12 th	1 st	Types of heat treatment	
		furnaces.	
	2 nd	Measurement of temperature of	
		furnaces.	
	3 rd	Important of plastics,	
		Classification- Thermoplastic	
		and thermoset.	
	4 th	Plastic and their uses.	
13 th	1 st	Various trade names of plastics,	
		plastic coatings, food grade	
		plastics.	
	2 nd	Applications of plastics in	
		automobile and domestic use.	
	3 rd	Rubber classification- Natural	
		and synthetic. Selection of	
		rubber.	
	4 th	Heat Insulating materials-	
		Asbestos, glasswool,	
		thermocole.	
14 th	1 st	Ceramics- Classification,	
		Properties, applications.	
	2 nd	Refractory materials- Dolomite,	
		porcelain.	
	3 rd	Glass- Soda lime, borosil.	
	4 th	Joining materials/ Adhesives-	
		Classification, Properties and	
		applications.	
15 th	1 st	Abrasive materials. Composites-	
		Classification, properties,	
		applications.	
	2 nd	Materials for bearing metals.	
	3 rd	Materials for Nuclear Energy.	
	4 th	Smart materials- properties and	
		applications.	

Lesson Plan

Name of the faculty: Sh. Sandeep Dhandhi Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 4th Mechanical A & B

Subject: Workshop Technology-II

Lesson Plan Duration: 15 weeks (From January, 2020 to April, 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 03,

Week	Theory		Practical		
	Lecture	Topic (including	Practical	Торіс	
	day	assignment / test)	Day	-	
1 st	1 st	Cutting Tools- Various types of			
		single point cutting tools and			
		their uses.			
	2 nd	Single point cutting tool			
		geometry, tool signature and			
		its effect, Heat produced			
		during cutting and its effect.			
	3 rd	Cutting speed, feed and depth			
		of cut and their effect, Cutting			
		Tool Materials- Properties of			
		tool material.			
2 nd	1 st	Study of various cutting tool			
		materials viz. High-speed,			
		tungsten carbide, cobalt steel			
		cemented carbides, satellite,			
		ceramics and diamond.			
	2 nd	Principle of turning, Function			
		of various parts of a lathe.			
	3 rd	Classification and specification			
		of various types of lathe.			
3 rd	1 st	Work holding devices.			
	2 nd	Lathe tools and operations:-			
		Plain and step turning, facing,			
		parting off, taper turning.			
	3 ^{ra}	Eccentric turning, drilling,			
		reaming, boring, threading.			
4 th	1 st	Knurling, form turning,			
		spinning.			
	2 nd	Cutting parameters- speed,			
		feed and depth of cut for			
	nd	various materials.			
	3'"	For various operations,			
th	ct	machining time.			
5 ^m	1 st	Speed ratio, preferred			
	nd	numbers of speed selection.			
	2""	Lathe accessories:- Centers,			
	rd	dogs different types of chucks			
	3'"	Collets face plate, angle plate,			
_ th	ct	and mandrel.			
6"	1 st	Steady rest, follower rest,			
	- nd	taper turning attachment.			
	2""	Tool post grinder, milling			
		attachment, Quick change			
	ard	device for tools.			
	3'~	Introduction to capstan and			
1		l turret lathe.			

7th	1 st	Principle to capstan and turret	
	• nd	lathe.	
	2"	Classification of drilling	
		machines and their	
		description.	
	3 ^{ra}	Various operations performed	
		on drilling machine-drilling,	
		spot facing, reaming, boring,	
		counter boring, counter	
		sinking, hole milling, tapping.	
8 th	1 st	Speeds and feeds during	
		drilling, impact of these	
		parameters on drilling,	
		machining time.	
	2 nd	Types of drills and their	
		features, nomenclature of a	
		drill	
	3 rd	Drill holding devices	
9 th	1 st	Principle of boring.	
	2 nd	Classification of boring	
		machines and their brief	
		description.	
	3 rd	Boring tools boring bars and	
	5	boring heads	
10 th	1 st	Working principle of shaper	
10	1	planer and clotter	
	and	Two of changes Two of	
	2	Type of snapers, Type of	
	ord	planers.	
	3.~	Types of tools used and their	
th	ct	geometry.	
11'''	1"	Speeds and feeds in above	
	nd	processes.	
	2"	Broaching	
	3 rd	Types of broaching machines-	
		Single ram and duplex ram	
		horizontal type.	
12 th	1 st	Vertical type pull up, pull	
		down, push down.	
	2 nd	Elements of broach tool,	
		broach tooth details-	
		nomenclature, types, and tool	
		material.	
	3 rd	Importance and use of jigs and	
	•	fixture	
13 th	1 st	Principle of location	
15	1		
	2 nd	Locating devices	
	2 rd	Clamping devices	
, th	J		
14"	1 ^{°1}	Advantages of jigs and	
		fixtures.	
	2 nd	Function of cutting fluid	
	3 rd	Types of cutting fluids	
		_	
15 th	1 st	Difference between cutting	
		fluid and lubricant.	

2 nd	Selection of cutting fluids for different materials and operations	
3 rd	Common methods of lubrication of machine tools.	