
DATABASE
MANAGEMENT SYSTEM

BASIC DEFINITIONS

• Database:

• A logical coherent collection of data representing the mini-world such
that change in the mini-world brings about change in database collected
for a particular purpose and for a group of intended users.

• Data:

• Meaningful facts, text, graphics, images, sound, video segments that can be
recorded and have an implicit meaning.

• Metadata:

• Data that describes data

• File Processing System

• A collection of application programs that perform services for the end-
users such as production of reports

• Each program defines and manages its own data

• Database Management System (DBMS):

• A software package/ system to facilitate the creation and maintenance of a
computerized database.

• Database System:

• The DBMS software together with the data itself. Sometimes, the
applications are also included. Database + DBMS

SIMPLIFIED DATABASE
SYSTEM ENVIRONMENT

EVOLUTION OF DB SYSTEMS

• Flat files - 1960s - 1980s

• Hierarchical – 1970s - 1990s

• Network – 1970s - 1990s

• Relational – 1980s - present

• Object-oriented – 1990s - present

• Object-relational – 1990s - present

• Data warehousing – 1980s - present

• Web-enabled – 1990s - present

PURPOSE OF DATABASE SYSTEMS

Database management systems were developed
to handle the difficulties of typical file-processing
systems supported by conventional operating
systems

DISADVANTAGES OF FILE PROCESSING

❑ Program-Data Dependence

❑ File structure is defined in the program code.

❑ All programs maintain metadata for each file they use

❑ Duplication of Data (Data Redundancy)

❑ Different systems/programs have separate copies of the same data

• Same data is held by different programs.

• Wasted space and potentially different values and/or different formats
for the same item.

❑ Limited Data Sharing

❑ No centralized control of data

❑ Programs are written in different languages, and so cannot easily access
each other’s files.

❑ Lengthy Development Times

❑ Programmers must design their own file formats

❑ Excessive Program Maintenance

❑ 80% of of information systems budget

❑ Vulnerable to Inconsistency

❑ Change in one table need changes in corresponding tables as well
otherwise data will be inconsistent

ADVANTAGES OF DATABASE APPROACH

• Data independence and efficient access.

• Data integrity and security.

• Uniform data administration.

• Concurrent access, recovery from crashes.

• Replication control

• Reduced application development time.

• Improved Data Sharing
• Different users get different views of the data

• Enforcement of Standards
• All data access is done in the same way

• Improved Data Quality
• Constraints, data validation rules

• Better Data Accessibility/ Responsiveness
• Use of standard data query language (SQL)

• Security, Backup/Recovery, Concurrency
• Disaster recovery is easier

COSTS AND RISKS OF THE
DATABASE APPROACH

• Up-front costs:

• Installation Management Cost and Complexity

• Conversion Costs

• Ongoing Costs

• Requires New, Specialized Personnel

• Need for Explicit Backup and Recovery

• Organizational Conflict

• Old habits die hard

DATABASE APPLICATIONS

• Database Applications:

• Banking: all transactions

• Airlines: reservations, schedules

• Universities: registration, grades

• Sales: customers, products, purchases

• Manufacturing: production, inventory, orders, supply chain

• Human resources: employee records, salaries, tax deductions

• Databases touch all aspects of our lives

LEVELS OF ABSTRACTION

• Many views, single conceptual

(logical) schema and physical

schema.

• Views describe how users see

the data.

• Conceptual schema defines

logical structure

• Physical schema describes the

files and indexes used.

* Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

EXAMPLE: UNIVERSITY
DATABASE

• Conceptual schema:

• Students(sid: string, name: string, login: string,

age: integer, gpa:real)

• Courses(cid: string, cname:string, credits:integer)

• Enrolled(sid:string, cid:string, grade:string)

• Physical schema:

• Relations stored as unordered files.

• Index on first column of Students.

• External Schema (View):

• Course_info(cid:string, enrollment:integer)

cid:string

INSTANCES AND SCHEMAS

• Similar to types and variables in programming languages

• Schema – the logical structure of the database (e.g., set of

customers and accounts and the relationship between

them)

• Instance – the actual content of the database at a particular

point in time

DATA INDEPENDENCE
• Ability to modify a schema definition in one level without affecting a

schema definition in the other levels.

• The interfaces between the various levels and components should be
well defined so that changes in some parts do not seriously influence
others.

• Two levels of data independence

• Physical data independence:- Protection from changes in logical structure of data.

• Logical data independence:- Protection from changes in physical structure of data.

INSTANCES AND SCHEMAS

• Similar to types and variables in programming languages

• Schema – the logical structure of the database

• e.g., the database consists of information about a set of customers and accounts and

the relationship between them)

• Analogous to type information of a variable in a program

• Physical schema: database design at the physical level

• Logical schema: database design at the logical level

• Instance – the actual content of the database at a particular point in time

• Analogous to the value of a variable

• Physical Data Independence – the ability to modify the physical schema

without changing the logical schema

• Applications depend on the logical schema

• In general, the interfaces between the various levels and components should be well

defined so that changes in some parts do not seriously influence others.

DATABASE LANGUAGES
Data Definition Language (DDL)

• Specification notation for defining the database schema

• DDL compiler generates a set of tables stored in a data dictionary

• Data dictionary contains metadata (data about data)

• Data storage and definition language – special type of DDL in which the
storage structure and access methods used by the database system are
specified

Data Manipulation Language (DML)

• Language for accessing and manipulating the data organized by the appropriate
data model

• Two classes of languages

• Procedural – user specifies what data is required and how to get those
data

• Nonprocedural – user specifies what data is required without specifying

how to get those data

DATABASE USERS

• Users are differentiated by the way they expect to interact with

the system

• Application programmers – interact with system through DML

calls

• Sophisticated users – form requests in a database query language

• Specialized users – write specialized database applications that

do not fit into the traditional data processing framework

• Naïve users – invoke one of the permanent application programs

that have been written previously

• E.g. people accessing database over the web, bank tellers, clerical staff

DATABASE ADMINISTRATOR
• Coordinates all the activities of the database system; the database

administrator has a good understanding of the enterprise’s information

resources and needs.

• Database administrator's duties include:

• Schema definition

• Storage structure and access method definition

• Schema and physical organization modification

• Granting user authority to access the database

• Specifying integrity constraints

• Acting as liaison with users

• Monitoring performance and responding to changes in requirements

DATA MODELS

• A collection of tools for describing:
• Data
• Data relationships
• Data semantics
• Data constraints

• Object-based logical models

• Entity-relationship model

• Object-oriented model

• Semantic model

• Functional model

• Record-based logical models

• Relational model (e.g., SQL/DS, DB2)

• Network model

• Hierarchical model (e.g., IMS)

ENTITY-RELATIONSHIP MODEL

▪ The basics of Entity-Relationship modelling

• Entities (objects)

• E.g. customers, accounts, bank branch

• Attributes

• Relationships between entities

• E.g. Account A-101 is held by customer Johnson

• Relationship set depositor associates customers with accounts

• Widely used for database design

• Database design in E-R model usually converted to design in the relational

model which is used for storage and processing

ER MODEL BASICS

• Entity: Real-world object distinguishable from other objects.

An entity is described using a set of attributes. Each attribute has a

domain.

• Entity Set: A collection of similar entities. E.g., all employees.

• All entities in an entity set have the same set of attributes. (Until

we consider ISA hierarchies, anyway!)

• Each entity set has a key.

Weak Entities: A weak entity can be identified uniquely only by

considering the primary key of another (owner) entity.

Employees

ssn
name

lot

ER MODEL BASICS

• Relationship: Association among two or more entities. E.g., Attishoo

works in Pharmacy department.

• Relationship Set: Collection of similar relationships.

• An n-ary relationship set R relates n entity sets E1 ... En; each relationship in R

involves entities e1 E1, ..., en En

• Same entity set could participate in different relationship sets, or in different “roles” in same set.

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subor-

dinate

super-

visor

ssn

E-R DIAGRAMS

n Rectangles represent entity sets.

n Diamonds represent relationship sets.

n Lines link attributes to entity sets and entity sets to relationship sets.

n Ellipses represent attributes

l Double ellipses represent multivalued attributes.

l Dashed ellipses denote derived attributes.

n Underline indicates primary key attributes (will study later)

MAPPING CARDINALITY CONSTRAINTS

• Express the number of entities to which another entity

can be associated via a relationship set.

• Most useful in describing binary relationship sets.

• For a binary relationship set the mapping cardinality must

be one of the following types:

• One to one

• One to many

• Many to one

• Many to many

MAPPING CARDINALITIES

One to one One to many Many to one Many to many

PARTICIPATION CONSTRAINTS

• Does every department have a manager?

• If so, this is a participation constraint: the participation of Departments in
Manages is said to be total (vs. partial).

• Every Department entity must appear in an instance of the relationship
Works_In (have an employee) and every Employee must be in a Department

• Both Employees and Departments participate totally in Works_In

lot

name dname

budgetdid

name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

KEYS
• A super key of an entity set is a set of one or more attributes whose values

uniquely determine each entity.

• A candidate key of an entity set is a minimal super key

• Customer_id is candidate key of customer

• account_number is candidate key of account

• Although several candidate keys may exist, one of the candidate keys is

selected to be the primary key.

• Alternate key is the candidate key which are not selected as primary key.

• Foreign key are the attributes of an entity that points to the primary key of

another entity. They act as a cross-reference between entities.

• Composite Key consists of two or more attributes that uniquely identify an

entity.

Non-key attributes are the attributes or fields of a table, other than candidate

key attributes/fields in a table.

• Non-prime Attributes are attributes other than Primary Key attribute(s)..

RELATIONAL MODEL

Example of tabular data in the relational model:

name ssn street city account-number

Johnson 192-83-7465 Alma Palo Alto A-101

Smith 019-28-3746 North Rye A-215

Johnson 192-83-7465 Alma Palo Alto A-201

Jones 321-12-3123 Main Harrison A-217

Smith 019-28-3746 North Rye A-201

account-number balance

A-101 500

A-201 900

A-215 700

A-217 750

RELATIONAL MODEL (BASIC)

The relational model used the basic concept of a relation or

table.

Tuple:- A tuple is a row in a table.

Attribute:- An attribute is the named column of a relation.

Domain:- A domain is the set of allowable values for one or more attributes.

Degree:- The number of columns in a table is called the degree of relation.

Cardinality:- The number of rows in a relation,is called the cardinality of the

relation.

INTEGRITY CONSTRAINTS

Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes

to the database do not result in a loss of data consistency.

• Domain Constraints:- It specifies that the value of each attribute x must

be an atomic value from the domain of x.

• Key Constraints:- Primary Key must have unique value in the relational table.

• Referential Integrity:-It states that if a foreign key in table A refers to the

primary key of table B then, every value of the foreign key in table A must be null or

be available in table B.

• Entity Integrity:- It states that no attribute of a primary key can have a null value.

A SAMPLE RELATIONAL DATABASE

SQL INTRODUCTION

Standard language for querying and manipulating data

Structured Query Language

Many standards out there:

• ANSI SQL, SQL92 (a.k.a. SQL2), SQL99 (a.k.a. SQL3), ….

• Vendors support various subsets: watch for fun discussions in class !

SQL

• Data Definition Language (DDL)

• Create/alter/delete tables and their attributes

• Following lectures...

• Data Manipulation Language (DML)

• Query one or more tables – discussed next !

• Insert/delete/modify tuples in tables

TABLES IN SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute namesTable name

Tuples or rows

TABLES EXPLAINED

• The schema of a table is the table name and its attributes:

Product(PName, Price, Category, Manfacturer)

• A key is an attribute whose values are unique;
we underline a key

Product(PName, Price, Category, Manfacturer)

DATA TYPES IN SQL

• Atomic types:

• Characters: CHAR(20), VARCHAR(50)

• Numbers: INT, BIGINT, SMALLINT, FLOAT

• Others: MONEY, DATETIME, …

• Every attribute must have an atomic type

• Hence tables are flat

• Why ?

TABLES EXPLAINED

• A tuple = a record

• Restriction: all attributes are of atomic type

• A table = a set of tuples

• Like a list…

• …but it is unorderd:

no first(), no next(), no last().

SQL QUERY

Basic form: (plus many many more bells and whistles)

SELECT <attributes>

FROM <one or more relations>

WHERE <conditions>

SIMPLE SQL QUERY

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT *

FROM Product

WHERE category=‘Gadgets’

Product

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks“selection”

SIMPLE SQL QUERY

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer

FROM Product

WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

“selection” and

“projection”

NOTATION

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input Schema

Output Schema

SELECT PName, Price, Manufacturer

FROM Product

WHERE Price > 100

KEYS AND FOREIGN KEYS

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign

key

JOINS

Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;

return their names and prices.

SELECT PName, Price

FROM Product, Company

WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

Join

between Product

and Company

JOINS

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product
Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price

FROM Product, Company

WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

MORE JOINS

Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all Chinese companies that manufacture products both in the

‘electronic’ and ‘toy’ categories

SELECT cname

FROM

WHERE

NULLS IN SQL

• Whenever we don’t have a value, we can put a NULL

• Can mean many things:

• Value does not exists

• Value exists but is unknown

• Value not applicable

• Etc.

• The schema specifies for each attribute if can be null

(nullable attribute) or not

• How does SQL cope with tables that have NULLs ?

OUTER JOINS

• Left outer join:
• Include the left tuple even if there’s no match

• Right outer join:
• Include the right tuple even if there’s no match

• Full outer join:
• Include the both left and right tuples even if

there’s no match

MODIFYING THE DATABASE

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

INSERTIONS

General form:

Missing attribute → NULL.

May drop attribute names if give them in order.

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)

VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

Example: Insert a new purchase to the database:

INSERTIONS

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product

FROM Purchase

WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.

Here we insert many tuples into PRODUCT

INSERTION: AN EXAMPLE

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

name listPrice category

gizmo 100 gadgets

prodName buyerName price

camera John 200

gizmo Smith 80

camera Smith 225

Task: insert in Product all prodNames from Purchase

Product

Product(name, listPrice, category)

Purchase(prodName, buyerName, price)

Purchase

INSERTION:
AN EXAMPLE

• INSERT INTO Product(name)

• SELECT DISTINCT prodName

• FROM Purchase

• WHERE prodName NOT IN (SELECT name
FROM Product)

name listPrice category

gizmo 100 Gadgets

camera - -

INSERTION: AN EXAMPLE

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price

FROM Purchase

WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category

gizmo 100 Gadgets

camera 200 -

camera ?? 225 ?? - Depends on the implementation

DELETIONS

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND

product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Example:

UPDATES

UPDATE PRODUCT

SET price = price/2

WHERE Product.name IN

(SELECT product

FROM Purchase

WHERE Date =‘Oct, 25, 1999’);

Example:

