

Lesson Plan

Name of the faculty: Sh. Mohit Kadyan, Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 3rd Mechanical A & B

Subject: STRENGTH OF MATERIALS

Lesson Plan Duration: 15 weeks

Work Load (Lecture/ Practical) per week (in hours): Lectures- 03, Practicals-02

Week	Theory		Practical	
	Lecture day	Topic (including assignment / test)	Practical Day	Topic
1 st	1 st	Basic concept of load, stress and strain.	1 st & 2 nd	Tensile test on bars of Mild steel and Aluminium.
	2 nd	Tensile, compressive and shear stresses		
	3 rd	Linear strain, Lateral strain, Shear strain, Volumetric strain. Concept of Elasticity, Elastic limit and limit of proportionality		
2 nd	1 st	Hook's Law and Elastic Constants Stress-strain curve for ductile and brittle materials	1 st & 2 nd	Tensile test on bars of Mild steel and Aluminium.
	2 nd	Nominal stress Yield point, plastic stage Ultimate stress and breaking stress		
	3 rd	Percentage elongation Proof stress and working stress, Factor of safety		
3 rd	1 st	Poisson's Ratio Thermal stress and strain	1 st & 2 nd	Bending tests on a steel bar or a wooden beam.
	2 nd	Longitudinal and circumferential stresses in seamless thin walled cylindrical shells.		
	3 rd	Introduction to Principal Stresses, Numerical Problems.		
4 th	1 st	Strain Energy, Resilience, proof resilience and modulus of resilience	1 st & 2 nd	Impact test on metals a) Izod test b) Charpy test
	2 nd	Strain energy due to direct stresses and Shear Stress		
	3 rd	Stresses due to gradual, sudden and falling load.		
5 th	1 st	Concept of moment of inertia and second moment of area		
	2 nd	Radius of gyration, Theorem of perpendicular axis and parallel axis (with derivation).		

	3 rd	Second moment of area of common geometrical sections		
6 th	1 st	Rectangle, Triangle, Circle (without derivation);	1 st & 2 nd	Impact test on metals a) Izod test b) Charpy test
	2 nd	Second moment of area for L,T and I section		
	3 rd	Section modulus and Numerical Problems		
7th	1 st	Concept of various types of beams and form of loading	1 st & 2 nd	Torsion test of solid specimen of circular section of different metals for determining modulus of rigidity.
	2 nd	Concept of end supports-Roller, hinged and fixed		
	3 rd	Concept of bending moment and shearing force, B.M. and S.F. Diagram for cantilever		
8 th	1 st	simply supported beams with and without overhang subjected to concentrated and U.D.L.		
	2 nd	Concept of Bending stresses		
	3 rd	Theory of simple bending Derivation of Bending Equation Use of the equation $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$		
9 th	1 st	Concept of moment of resistance $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$	1 st & 2 nd	To plot a graph between load and extension and to determine the stiffness of a helical spring.
	2 nd	Bending stress diagram Section modulus for rectangular, circular and symmetrical I section.		
	3 rd	Calculation of maximum bending stress in beams of rectangular section		
10 th	1 st	Calculation of maximum bending stress in beams circular, and T section.		
	2 nd	Numerical Problems		
	3 rd	Concept of column, modes of failure, Types of columns, modes offailure of columns		
11 th	1 st	Buckling load, crushing load	1 st & 2 nd	Hardness test on different metals.
	2 nd	Slenderness ratio		
	3 rd	Effective length and End restraints		
12 th	1 st	Factors effecting strength of a column		
	2 nd	Strength of column by Euler Formula without derivation		
	3 rd	Rankine Gourdan formula (without derivation)		
13 th	1 st	Concept of torsion, difference		

		between torque and torsion.		
	2 nd	Derivation of Torsion Equation,use of torsion equation for circular shaft(solid and hollow)		

	3 rd	Comparison between solid and hollow shaft with regard to their strength and weight. Power transmitted by shaft		
14 th	1 st	Concept of mean and maximum torque		
	2 nd	Numerical Problems		
	3 rd	Closed coil helical springs subjected to axial load and calculation of: Stress deformation		
15 th	1 st	Stiffness and angle of twist and strain energy		
	2 nd	Strain energy and proof resilience		
	3 rd	Determination of number of plates of laminated spring (semi elliptical type only)		