

Lesson Plan

Name of the faculty: Sh. Sombir Lecturer in Mechanical Engg.

Discipline: Mechanical

Semester: 4th Mechanical

Subject: Machine Design

Lesson Plan Duration: 15 weeks (January 2025 to May 2025)

Work Load (Lecture/ Practical) per week (in hours): Lecturers- 03

Week	Theory		Practical	
	Lecture day	Topic (including assignment / test)	Practical Day	Topic
1 st	1 st	Design – Definition, Type of design, necessity of design Comparison of designed and undesigned work		
	2 nd	Design procedure Characteristics of a good designer		
	3 rd	Design terminology: stress, strain, factor of safety, factors affecting factor of safety, stress concentration, methods to reduce stress concentration, fatigue, Endurance limit.		
2 nd	1 st	General design consideration, Selection of materials, criteria of material selection, Codes and Standards (BIS standards)		
	2 nd	Various design failures- maximum normal stress theory, maximum stress theory		
	3 rd	maximum strain theory		
3 rd	1 st	Design of Shaft		
	2 nd	Type of shaft, shaft materials, Type of loading on shaft, standard sizes of shaft available		
	3 rd	Shaft subjected to torsion only, determination of shaft diameter (hollow and solid shaft) on the basis of : - Strength criterion		
4 th	1 st	Shaft subjected to torsion only, determination of shaft diameter (hollow and solid shaft) on the		

		basis of : - Rigidity criterion		
	2 nd	Determination of shaft diameter (hollow and solid shaft) subjected to bending		
	3 rd	Determination of shaft diameter (hollow and solid shaft) subjected to combined torsion and bending		
5 th	1 st	Design of Key		
	2 nd	Types of key		
	3 rd	materials of key, functions of key		
6 th	1 st	Failure of key (by Shearing)		
	2 nd	Failure of key (by Crushing).		
	3 rd	Design of key (Determination of key dimension)		
7 th	1 st	Design of key (Determination of key dimension)		
	2 nd	Effect of keyway on shaft strength. (Figures and problems).		
	3 rd	Effect of keyway on shaft strength. (Figures and problems).		
8 th	1 st	Design of Coupling		
	2 nd	Necessity of a coupling, advantages of a coupling		
	3 rd	types of couplings		
9 th	1 st	design of muff coupling,		
	2 nd	design of flange coupling		
	3 rd	Design of Joints Types of joints - Temporary and permanent joints		
10 th	1 st	Utility of various joints		
	2 nd	Design of Temporary Joints: Knuckle Joints – Different parts of the joint, material used for the joint		
	3 rd	Type of knuckle Joint, design of the knuckle joint. (Figures and problems).		
	1 st	Cotter Joint – Different parts of the spigot and socket joints		
11 th	2 nd	Design of spigot and socket joint.		
	3 rd	Design of Permanent Joint: Riveted Joints. : Rivet materials, Rivet heads		
	1 st	leak proofing of riveted joint caulking and fullering.		
12 th	2 nd	Different modes of rivet joint failure		
	3 rd	Design of riveted joint – Lap and butt, single and multi riveted joint.		
	1 st	Welded Joint - Welding symbols		
13 th	2 nd	Type of welded joint, strength of parallel and transverse fillet		

		welds.		
	3 rd	Design of Screwed Joints and Springs Design of screw: Introduction, Advantages and Disadvantages of screw joints		
14 th	1 st	Location of screw joints. Important terms used in screw threads, designation of screw threads, Initial stresses due to screw up forces, stresses due to combined forces		
	2 nd	Design of Screw jack		
	3 rd	Design of Spring: Classification and applications of sprigs, spring terminology		
15 th	1 st	Stresses in springs, Wahl's correction factor		
	2 nd	Design of open coil helical spring subjected to uniform applied load under tension and compression.		
	3 rd	Design of open coil helical spring subjected to uniform applied load under tension and compression.		